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Lecture #8: The Born-Oppenheimer Approximation 

For atoms we use SCF to define 1e– orbitals. Get V
 
eff (r)  for each e– in field of e–’s in all other occupied

orbitals. 
ψ(r) = φ1(r1)…φN (rN ) single antisymmetrized product function. 


This is a way of defining our zero-order complete basis set.

It is a bad approximation and accurate ab initio electronic wavefunctions are CI — linear combination of

many configurations (product functions).


For molecules, we separate Ψ r;R,θ,φ)  into a product of electronic, vibrational, and rotational(


functions Φi(r;R)χivΩJ|ΩJM〉. 

This is the Born-Oppenheimer approximation. It is based on a good approximation (e– move much 
faster than nuclei) and most molecular eigenstates can be well described by single
electronic*vibrational*rotational product. 

BUT WHAT DO WE HAVE TO SLIP UNDER THE RUG? 

How to separate H (r,R,θ,φ) ? some subtle stuff — return to this for polyatomic molecules


1. CLAMPED NUCLEI 

TN → 0 get electronic Φi( r ; R) and nuclear Vi(R) by neglecting andΦi ∇
2 
Φ j

 
∇χ(R) .Φi ∇ Φ j 

2. For the i-th electronic state, H
ROT−VIB (R,θ,φ)  separated into H ROT 

(θ,φ) + H
VIB 
(R) 

define |ΩJM〉 basis set 
neglect part of HROT 

Define ViJΩ(R) = Vi(R) + Bi(R)[J(J + 1) – Ω2] effective potential
Define χivJΩ(R) vibrational basis set. 

3. EXACT ψ — use BO ψ° to go beyond BO approximation, then put the neglected terms back into 
H 
spectroscopic perturbations
adiabatic vs. diabatic limits (neglect of either ∇2 or electrostatic terms) 

Potential Energy Surfaces are the central organizing concept of molecular spectroscopy. 

Recipe: 
1. write exact H 

2. neglect inconvenient terms
3. solve the simplified equation to define a complete basis set
4. put the neglected terms back in. 
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H = T
e 
+ T

N 
+ VeN + VNN + Vee Defined with respect to center of mass. See 

[Bunker, J. Mol. Spect. 28, 422 (1968)] for 

T
e 
= ∑ 

pi
2 

= − 


2 

∑∇i
2 neglected e– induced center of mass wobble. 

2me 2mei i 
internuclear distance 

T
N 
= 

p̂ 2A + 
p̂ B

2 

→ T
N (R,θ,φ) = T

N
(R) + H ROT (R;

orientation of with 
respect to lab XYZ 

θ,φ)
2mA 2mB 


N 

2 ⎡ ∂ ⎛ ∂ ⎞ ⎤radial only KE T (R) = − 
2µR2 ⎣⎢ ∂R ⎝⎜ 

R2 

∂R ⎠⎟ ⎦⎥ 

H ROT (R,θ,φ) = − 


2 (−2 R
2 )

2µR2 

 

rotational constant hcB(R) 

nuclear angular momentum 

R ≡ J − L − S µ = 
mAmB 

mA + mB 

⎡
 ZAe2 ZBe2 ⎤

= − 

VNN = + 
ZAZBe2 

R 

Vee = + 

∑


∑


VeN ⎢ 
⎢
⎢⎣


+
 ⎥ 
⎥
⎥⎦


ri − RA  
ri − RB i 

RAi RBi 

e2 rij spoils 1e
–

 orbital approximation →  SCF 
i> j 

⎫
⎬
⎭

Two coordinate systems
LAB XYZ 

 both have origin at center of mass  (definition of body frame becomes more
BODY xyz 

complex for polyatomic molecules)
related by 3 Euler angles (need only 2 angles to locate internuclear axis, 3rd angle chosen implicitly =

phase convention) 

Can we separate H = H
el 
+ H

VIB 
+ H

ROT 
? 

if we could, then Eevr = Ti + Gi(v) + Fiv(J) 
χv 
i ΩJM =ψevr φi 

NOT quite. 
e– move fast, nuclei slow. Take this to extreme limit and pretend nuclei can be held fixed.

CLAMPED NUCLEI TN → 0 
solve clamped nuclei electronic Schrödinger Equation at grid of fixed R : R1, R2, … Rn 
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manifold of 
eigenstates, computed
at grid of Rn points 

H (r;Rn )Φi (r;Rn ) = Ei (Rn )Φi (r;Rn ) Rn  fixed 
 grid  

point


This defines Ei(R) which we call the potential energy function for the i-th electronic state Vi(R).


This also defines Φi (r; R)  a complete set of electronic wavefunctions which depend parametrically on

R. 

Next: use Ei(R) and Φi (r; R)  to define a (non-rotating) (TθN,φ → 0)  nuclear motion Schrödinger
 

Equation. 

BOψi,v (r; R) ≡ Φi (r; R) χi,v (R)  (no θ,φ dependence) 

plug into full Schrödinger Equation, left multiply by Φ*
i (r; R)  and integrate over all r : denoted as r . 
  

HψBO = EψBO 

H = E ΦiΦi Φiχ i,v Φiχi,v r r 
independent = 1 independent
of r of r 

came from Te + VeN + VNN + Vee only 

T
N 

T
N

(R)

−2

2µ 
∇R

2 

+ Ei(R) 
no θ,φ 

Φi Φi r χ i,v + Ei(R)χ i,v (R) = Eχ i,v (R) 
Vi(R) 

eigenvalue equation, χi,v(R) ↔ Ei,v 
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Chain rule for ∇2 

∇2(AB) = ∇[ ( ∇A)B + A∇B] = (∇2A)B + (∇A)(∇B) + (∇A)(∇B) + A(∇2B) 

Thus 

⎛ 2 ⎞
Φi T

N 
Φi = φi T

N 
φiχi,v r 

χi,r + 2
⎝⎜
− 

2µ⎠⎟ 
φi (∇Rφi )r ∇Rχi,vr 


do we expect φi  to depend on R? 

=1 
+ φi φi T

N
χi,vr  

keep this, neglect the
other two terms 

H
VIBR 

We are left with [ T N(R) + Vi(R)]χi,v = Ei,vχi,v(R) nuclear Schrödinger Equation 

So are we done yet? Nope. We must reconsider neglected terms from TN including rotation. 

The nuclear motion H (R,θ,φ) is not quite separable into ĥ 1(R) + ĥ 2(θ,φ) (worse for polyatomics) 

Another trick is needed to separate out θ,φ degrees of freedom. 

notation is tricky here 

H (R,θ,φ)	= TN (R) + 
2 ⎤⎦+ Vi(R)i 2µR2 

−2 R
2⎡⎣

put this back in

nuclear rotation 
momentum — depends on θ,φB(R)

rotational constant BAD NEWSoperator - depends on R	 R ↔ θ,φ coupling, therefore
can't separate! 

The trick is to use a standard set of angular momentum basis functions [analogous to the Y
 
m (θ,φ) of the

central force problem], then define what we have to temporarily throw away so that we can integrate 
over θ,φ to get a new and correct rotating molecular Schrödinger Equation. 

Define |ΩJM〉 basis functions. Eigenfunctions of Jz, J2, JZ 

angular
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They are f(θ,φ) and describe probability of finding internuclear axis (BODY z axis) pointing in θ,φ 
direction (with respect to lab) given that the magnitude of the angular momentum is [J(J + 1)]1/2 and that 
the projection of 


J  on Z is M and on z is Ω 

i.e. 
= 2J(J +1) ΩJM 

DIRECTION COSINES cos (J,Z) =
[J(J +

M
1) ]1/2 

J2 ΩJM 

= M ΩJM cos (J,z) = 
Ω 

]1/2 

Jz ΩJM 

[J(J +1) Jz ΩJM = Ω ΩJM 

J = R + L + S 

Total angular momentum is conserved, so it must be true that [ H, J
2

] = 0. 

J is a rigorously good quantum number. What about Ω and M? Why? 

∴ better to use J 2 than R 2, but J does not appear in H (R, θ, φ). 

We are going to temporarily throw away some stuff. (Some clever algebra needed to reduce R
2

 to this 
simple form.) 

R = J – L – S 

R 2 
= (J2 − J2z ) + ⎡⎣(S2 − S2z ) + (L2 − L2z )


–2 JxLx Ly ) L-uncoupling
( + Jy


–2 JxSx Sy ) S-uncoupling
( + Jy


+2 Lx
( Sx + LySy )⎤⎦ 
temporarily get rid of all stuff in [ ]
(J2 − Jz

2 ) ΩJM = 2 [J(J +1) −Ω2 ] ΩJM 

Now we can get rid of θ,φ part of H 
i(R, θ, φ) 

Express unknown χi,v(R, θ, φ) as product of radial and angular factors,
R ivJΩM and ΩJM = θ,φ ΩJM χi,v,J,Ω,M (R) =  

θ,φ 

(usual schizophrenic approach: vibration as wavefunction, rotation χi,v (R,θ,φ) ≡ ∑ χi,v,J,Ω,M (R) ΩJM
JΩM 

as state vector). 
left multiply Schrödinger Equation expressed in terms of H (R,θ,φ)  by 〈ΩJM| and integrate over θ,φ. 
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ΩJM H (R,θ,φ) ∑ χi Ω′J ′M ′ (R) Ω′J′M′ ΩJM EivJΩ ∑ χi Ω′J ′M ′ Ω′J′M′ 
Ω′J ′M ′ Ω′J ′M ′ θφ

=

θφ 

{ [LHS = TN(R) + Vi(R) + B(R) J(J +1) −Ω2 ]} ΩJM ∑ Ω′J′M′ χi Ω′J′M′ 
Ω′J′M′ 


orthonormality φθ 

(All of this comes out of the θ,φ integral because the terms are independent of θ, φ or because we used 
|ΩJM〉 basis functions.) 

Ω′J′M′+ ΩJM ⎣⎡neglected stuff from R 2 
⎦⎤ ∑ χi Ω′J′M′ 
Ω′J′M′ 

some non-zero ∆Ω = ±1 matrix elements. 
Neglect for now. Perturbations and L,S
uncoupling later! 

Simplifies to: 

LHS ≅ ⎧TN (R) + Vi(R) + B(R) J(J + 1) − Ω2 ⎫χivΩJM⎪ [ ]⎪

 ⎨ call this Vi,JΩ (R) ⎬

⎪ “effective potential curve” ⎪⎩ ⎭


RHS = EivJΩ χivΩJM(R) 

None of the operators on the LHS depend on M or JZ, drop this index. Now at last we have a simple R-
equation. 

⎡N ⎤
⎣T (R) + Vi,JΩ (R)⎦χivJΩ = EivJΩχivJΩ 

different set of vibrational χ’s for each J,Ω (we can
avoid this by Van Vleck transformation, later) 

v v

v

v
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So we are almost done. We have defined a complete basis set. 

ψ ivJΩ
BO (r;R,θ,φ) = Φi (r;R)χivJΩ (R) θφ ΩJM 

* Φi(r;R) is an eigenfunction of H – T
N

(R,q,f)  ( T N 
is removed because we clamped the nuclei) 

* |ΩJM〉 is eigenfunction of J2, Jz, JZ and approximate eigenfunction of T N (R,θ,φ) -T N (R) 


2 
 2 

 − L − S 
2 
− J

2 
= 

2µR2 
−2 R = B(R)[J ]2 ≈ B(R)[J z ] 

* χivJΩ(R) is eigenfunction of T N (R) + ViJΩ (R) 

All we need now is the exact ψ 

mixing coefficient 

exact	 Born-Oppenheimer civJΩ =ψ J	 ∑ ψ° ivJΩ 
i,v,Ω 

The Born-Oppenheimer approximation is a good approximation when only one term in summation is
important. 

IN THIS SPECIAL CASE 
EevJ = Ti + Gi(v) + Fi,v(J) 

and it is straightforward to go in either direction
EevJ ↔ ViJ(R)

Sometimes a few mixing coefficients are important — must “go beyond the Born-Oppenheimer
approximation” — “PERTURBATIONS” (local vs. global) 

Perturbation Theory 

The “nominal” k, v, J state is denoted by putting it between ‘ ’. 

EXACT	 Born-Oppenheimer + 
Hiv J;kvJ ′ Born−Oppenheimer ψ‘kvJ’ = ψ° kvJ ∑ o o ψ° iv J ′

i,v′ EkvJ − Eiv J ′
1st order corrections to ψ. If one or more of these correction terms is too large, must diagonalize a 
matrix. 

What terms in H  cause trouble? 
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Vee = e2/rij	 explicitly included in definition of ψ°BO which is also called the “adiabatic” 
wavefunction. This keeps potential curves for states of same symmetry from crossing.
Non-crossing rule.

TN(R)	 ignored effect on Φi( r ;R)
HROT	 ignored effects of stuff in [ ]. These effects can be turned off by going to J = 0.
Two convenient limits 

1.	 Adiabatic or Born-Oppenheimer 

addefine Φi electronic basis functions by exactly diagonalizing H − TN(R) 

treat TN(R) as a perturbation 
BO ∂	 BOe.g. ≠ 0  because ψ’s are R-dependent — especially rapid change nearψ i ∂R 

ψ j 

avoided crossings R ≈ Rc 

get non-crossing potential energy curves 

2.	 DIABATIC Φi
d 

exclude some undefinable part of Vee in order to define “single configuration” electronic basis
states.


Treat H el (that undefinable part of Vee) as a perturbation


Φi
d 

∂
∂ 
R 

Φd
je.g. = 0  (we refuse to let Φd depend on R) 

Φi
d H el Φd

j ≠ 0because ∂ Φd
j ≡ 0 but 

∂R 
get crossing curves 

Two limiting cases 
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Weakly avoided crossing — diabatic basis is preferable because i ∂
∂R 

j  is very large for R near 

crossing. 

Strongly avoided crossing — adiabatic basis is preferable because i H
el 
j  would be large relative to all 

vibrational level spacings. 


