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MASSACHUSETTS INSTITUTE OF TECHNOLOGY 
5.80 Small-Molecule Spectroscopy and Dynamics

Fall, 2008 

Problem Set #2 ANSWERS 

Reading Assignment: Bernath, Chapter 5 

The following handouts also contain useful information: 

C & S, page 117, radial expectation values of rk for 1-e– atoms 
LS → (j,j′)J Coupling Patterns
Herzberg pp. 177-181, The Interval Rule: Analysis of Multiplets 

Problems 1-4 deal with material from my 2/11/94 lecture (Lecture 7). A lot of background material is
provided. These problems illustrate non-text material dealing with 2 × 2 secular equations, perturbation
theory, transition probabilities, quantum mechanical interference effects, and atomic L-S-J vs. j1 – j2 – J 
limiting cases. C & S references are to Condon and Shortley “The Theory of Atomic Spectra.’
Problems 5-9 are standard textbook problems, more basic, and much easier than 1-4 and 10. 

BACKGROUND MATERIAL FOR PROBLEMS 1-4 

(i) Transition Amplitudes for np2 ← np n′s Transitions in the L-S-J Limit 

µ ≡ −e3−1/2 ∫
∞ 
Rnp r Rn s′ dr C&S, p. 245.

0 

C&S, p. 247 gives all nonzero transition amplitudes: 

p2 1S µ sp 1P1 = −(20)1/2 µ


p2 1 D µ sp 1P1
 = +10µ


p2 3 P0 µ sp 3P1
 = −(20)1/2 µ


p2 3 P1 µ sp 3P0
 = −(20)1/2 µ


p2 3 P1 µ sp 3P1
 = +(15)1/2 µ


p2 3 P1 µ sp 3P2
 = −5µ


p2 3 P2 µ sp 3P1
 = −5µ


p2 3 P2 µ sp 3P2
 = +(75)1/2 µ. 
All other transition amplitudes are zero, most notably: 

p2 3 P0 µ sp 3P0 = 0 

because there is no way to add one unit of photon angular momentum to an initial state with J = 0 to
make a final state with J = 0. 



(ii) Energy levels for np2 and np n′s in the L–S–J Basis Set 

In the L–S–J limit, for p2 (see C&S, pp. 198, 268): 

1S0 F0 + 10F2

3P0 F0 − 5F2


Hee = 3P1 F0 − 5F2 
3P2 F0 − 5F2 
1D2 F0 + F2 

1S0 0 −21/2 ζ 
3 P0 −21/2 ζ −ζ 

HSO = 3 P1 − 1 
2 ζ 

3 P2 
1 
2 ζ 2−1/2 ζ 

1 D2 21/2 ζ 0 

So we have three effective Hamiltonians for (np)2 

F0 + 10F2 –2+1/2 ζ
H(0) = 

–2+1/2 ζ F0 − 5F2 − ζ 
= F0 + 

5
2 
F2 − 

1
2 
ζ + 

∆0 V0 

V0 − ∆0 

∆0 = 
15 1 = −2+1/2 ζ
2 
F2 + 

2 
ζ V0 

H 1
2
1 ζ( ) = F0 − 5F2 − 

F0 − 5F2 + ζ / 2 2−1/2 ζ
H(2) = 

2−1/2 ζ 
= F0 − 2F2 + 

4
1 ζ + 

− ∆2 V2 

F0 + F2 V2 + ∆2 

∆2 = 3F2 − 
4
1 ζ V0 = −2−1/2 ζ 

Similarly, for the sp configuration: 

3P2 F0 − G1 + 
2
1 ζ 

H = 
3P1 F0 − G1 − 

2
1 ζ 2−1/2 ζ 

1P0 2−1/2 ζ F0 + G1 
3P0 F0 − G1 − ζ 

and there are three effective Hamiltonians for (n′s)(np) 

H(0) = F0 – G1 – ζ 
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H 1 1
4 
ζ + 

− 

V
∆

1

1 

∆
V1
1 

∆1 = G1 + 
1
4 
ζ V1 = 2−1/2 ζ( ) = F0 − 

H(2) = F0 – G1 + 2
1
ζ 

(iii)	 Now we are ready to discuss the energy level diagram and relative intensities of all spectral lines
for transitions between (np)2 ← (n′s)(np) configurations. The relevant parameters are: 

F0(np,np) – F0(n′s,np) ≡ ∆F0	 (difference in repulsion energy for np by np vs.
np by n′s; ∆F0 > 0 if n′ = n) 

ζ(np)	 (spin-orbit parameter for np; same for both
configurations), ζ > 0 by definition 

F2(np, np)	 (quadrupolar repulsion between two np
electrons) F2 > 0. 

G1(n′s, np)	 (exchange integral) G1 > 0. 

µ	 (np ← n′s transition moment integral) 

All spectral line frequencies and intensities may be derived from these 5 fundamental electronic 
constants. Note that there are 5 L–S–J terms in np2 and 4 L–S–J terms in np n′s, in principle giving rise
to a “transition array” consisting of 5 × 4 transitions. The 5 parameters determine 20 frequencies and 20
intensities! We are not limited to the L–S–J or the j1 – j2 – J limit. 

1.	 Construct level diagrams for the p2 and sp configurations at the L–S–J limit (ζ = 0), the j–j limit
(F2 = 0 for p2, G1 = 0 for sp), and at several intermediate values of ζ/F2 or ζ/G1. This sort of 
diagram is called a “correlation diagram”. For graphical purposes it is convenient to keep
constant the quantity, which determines the splitting between highest and lowest levels of p2, 

225 15 9 
4 2

F2ζ + 
4 
ζ2 ≡ ∆ E p2( ) ,F2

2 + 

and a similar quantity for sp, 

G1
2 + 
16
9 ζ2 + 

2
1 G1ζ ≡ ∆ E(sp) . 

Correlation diagrams for sp and p2 configurations can be found on pages 272 and 275 of Condon and
Shortley. 

3ζ
For sp, χ = 4G1 
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ε / G1 

1 + χ2[ ]1/2 ε 
3ζ 
4 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 

1 + 1 χ( )2⎡⎣ ⎤⎦ 
1/2 

For p2, χ = 5F
ζ 

2 

ε / F2 

1 + χ2[ ]1/2 ε 
ζ 
3 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 

1 + 1 χ( )2⎡⎣ ⎤⎦ 
1/2 

2.	 Use the first order non-degenerate perturbation theory correction to the wavefunctions to 
compute the intensities for p2 ← sp transitions near the L–S–J limit (ζ  F2 for p2, ζ  G1 for 
sp). For example, the “nominal” sp 1P1 level becomes 

2−1/2 ζH1 P1
3P1‘sp 1P1’ = sp 1P1 E1P1 

− E3 P1 

sp 3P1 = sp 1P1 + 
2G1 + 

2
1 ζ 

sp 3P1 .+ 0 0 

The transition probability is the square of the transition amplitude, so the “nominally forbidden”
transition p2 3P1 ← sp 1P1 has a transition probability 
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P ( 3P1 ← 1P1 ) = ‘sp 1P1’|µ|‘p
2 3P1’ 

2 
= 

2ζ2 

2 µ
2(15). 

⎛ 1 ⎞ 
⎝⎜ 2G1 + 

2 
ζ⎠⎟ 

Note that, for the transitions between either of the two sp J = 1 levels and either of the two p2 J = 
2 or J = 0 levels, the transition probability includes two amplitudes which must be summed
before squaring. This gives rise to quantum mechanical interference effects. In fact, it is
because of these interference effects that the j–j limit (3/2, 3/2)2 ← (1/2, 1/2)1 and (1/2, 1/2)0 ← 
(1/2, 1/2)1 transitions become rigorously forbidden. 

ψ’s corrected to 1st order 

2−1/2 ζ
‘1D2’ = 1D2


p2: 
+ 1 

3 P2 

6F2 − 
2 
ζ 

‘3P2’ = 3 P2 − 
2−1/2 ζ 

6F2 − 
2
1 ζ 

1D2 

‘3P1’ = 3 P1 

2ζ 1S0 ‘3P0’ = 3 P0 + 
15F2 + ζ 

2ζ 3 P0 ‘1S0’ = 1S0 − 
15F2 + ζ 

sp: ‘3P2’ = 3 P2 

2−1/2 ζ‘3P1’ = 3 P1 − 
2G1 + 12 ζ 

1P1 

2−1/2 ζ‘1P1’ = 1P1 + 
2G1 + 12 ζ 

3 P1 

‘3P0’ = 3 P0 

Calculate intensities of selected ‘forbidden’ transitions: 

0 
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0 

2−1/2 ζ
‘1D2’ µ ‘3P1’
 =
 1 D2 µ 3 P1 −
 1D2 µ 3P1
2G1 + 12 ζ


µ 1P1
3P2 

+ (4G1+ζ)( 
0 ζ2


2−1/2 ζ− 3 P2 µ 
3 P1 )
1 

2 ζ − 6F2 
1 
2 ζ − 6F2 

⎡ 10µ −5µ ⎤ 
= −2−1/2 ζ ⎢ 2G1 + 12 ζ 

+ 
−6F2 + 12 ζ

⎥
⎦⎣

3.	 Condon and Shortley (p. 294) give the transformations from the L–S–J to the j1 – j2 – J basis set. 
These transformed functions correspond to the functions that diagonalize HSO. 

⎞
⎠	

⎞
⎠

⎞
⎠

⎞
⎠

⎞
⎠

⎞
⎠

1 

⎟	 ⎜ ⎜ 3⎟ 

⎞
⎠

⎞
⎟⎠

⎞
⎠

⎞
⎠

⎛
⎝

⎛
⎝

⎛
⎝	

⎛
⎝

⎟	 ⎜ ⎟ ⎜ ⎟ 

⎜ ⎜ ⎟ 

⎞
⎠	

⎞
⎠

⎞
⎟⎠

⎞
⎠

⎞
⎠

⎞
⎠

⎞
⎠

⎞
⎠

⎛ ⎞ ⎛⎛
⎜ ⎟ ⎟⎜ ⎜ ⎟3⎝ ⎠ ⎝⎝	

2⎛ ⎞ ⎛⎛ −⎜ ⎟⎝ ⎠ ⎝⎝

⎛
⎜⎝

⎛ ⎛
⎜⎝ ⎝

⎛ ⎛
⎜⎝ ⎝

⎛
⎜⎝

⎛ ⎛ 
⎝ ⎝

⎛ ⎛ 
⎝ ⎝

⎛ 
⎝

⎟ 

⎜ ⎟	 ⎜ ⎟ ⎜ ⎟ 

⎜ ⎟	 ⎜ ⎟ ⎜ ⎟ 

⎜ ⎟ 

p2 1/2 1/2 3 3
 2
 3P2 
1D2+
=


2 2
 3
2 

1/2 1/2 3 1
 1
 3P2 
1D2 

=

2 2
 3
2 

3 1
 3P1 =

2 2
 2 

1/2 1/2 3 3
 2
 1
1S0
3P0−
=


2 2
 3
 3
0 

1/2 1/2 1 1
 1
 2
⎞
⎟⎠ 0 

1S0 
3P0+
=


2 2
 3
 3


3
2 

1
2

sp 3P2 =

2 

1/2 1/2 3
2


1
2


2
 1
1P1 
3P1+
=


3
 3
1 

1/2 1/2 1 1
 1
 2
1P1
3P1−
=


2 2
 3
 3
1 

1 1
 3P0 =

2 2
 0 

Construct the new p2 H(0), H(1), H(2) and sp H(0), H(1), H(2) matrices in the j–j basis using the
above transformations. 

The p2 and sp H(J) matrices are easily found in the j1 – j2 – J basis by determining the unitary transforms
which transform the j1 – j2 –J basis functions into L – S – J basis functions and using the fact that: 

~H = U†HU 
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p2, J = 0 : Ux = 
 ′x

1 
3 

2 
3 

2 
3

− 1 
3 

⎡ 

⎣

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦

⎥ 
⎥ 
⎥ 
⎥ 

a 
b 
⎡ 
⎣
⎢

⎤ 
⎦
⎥ = 

α 

β 
⎡ 
⎣
⎢

⎤ 
⎦
⎥→ 

1 S0 

3 P0 

U† = U *( )T 

↑ U ↑ ⎝⎜
⎛ 

⎠⎟
⎞1 

2 
1 
2 0 ⎝⎜

⎛ 
⎠⎟
⎞3 

2 
3 
2 0 

U† = 

1 
3 

2 
3 

2 
3

− 1 
3 

⎡ 

⎣

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦

⎥ 
⎥ 
⎥ 
⎥ 

U†HU = 

1 
3 

2 
3 

2 
3

− 1 
3 

⎡ 

⎣

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦

⎥ 
⎥ 
⎥ 
⎥ 

H11 H12 

H12 H22 

⎡ 
⎣
⎢

⎤ 
⎦
⎥

1 
3 

2 
3 

2 
3

− 1 
3 

⎡ 

⎣

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦

⎥ 
⎥ 
⎥ 
⎥ 

= 

1 
3 

2 
3 

2 
3

− 1 
3 

⎡ 

⎣

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦

⎥ 
⎥ 
⎥ 
⎥ 

1 
3 H11 + 2 

3 H12 , 2 
3 H11 − 1 

3 H12 

1 
3 H12 + 2 

3 H22 , 2 
3 H12 − 2 

3 H12 

⎡ 

⎣
⎢ 
⎢

⎤ 

⎦
⎥ 
⎥

= 
1 
3 H11 + 2 

3 H22 + 2 2 
3 H12 

2 
3 H11 − H22( ) + 1 

3 H12 

2 
3 H11 − H22( ) − 1 

3 H12 
2 
3 H11 + 1 

3 H22 − 2 2 
3 H12 

⎡ 

⎣
⎢

⎤ 

⎦
⎥

Tr H( ) = Tr H( ) = H11 + H22 checks ✔ 

p2 ‘1D2 ’ µ sp‘3P1 ’ 
2 

= 
ζ2 

2 
10 

2G1 + 
1 
2 
ζ 
+ 

5 

6F2 − 
1 
2 
ζ 

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

2 

µ2 
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G1, F2  ζ in L – S – J limit 

‘p2 ’‘1S0 ’ µ sp‘3P1 ’ = 1 S0 µ 3 P1 − 
2ζ 

15F2 − ζ 
3 P0 µ 3 P1 

− 
2−1/2 ζ 

2G1 + 
1 
2 
ζ 

1 S0 µ 1 P1 + 0 
ζ2 

F2G1 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 

3 P0 µ 3 P1 

= − 
2ζ 

15F2 − ζ 
− 20µ( ) − 

2−1/2 ζ 

2G1 + 
1 
2 
ζ 

− 20µ( ) 

p2 ‘1S0 ’ µ sp‘3P1 ’ 
2 

= 40µ2ζ2 1 
15F2 − ζ 

+ 
1 

4G1 + ζ 

⎡ 

⎣
⎢ 

⎤ 

⎦
⎥ 

2 

L – S – J coupling F2, G1  ζ 
ζ can be neglected in the denominator 

H(1) = 
1 
3 

H11 + 2H22 + 2 2H12 –H12 + 2 H22 − H11( ) 
–H12 + 2 H22 − H11( ) 2H11 + H22 − 2 2H12 

⎡ 

⎣
⎢ 
⎢

⎤ 

⎦
⎥ 
⎥

′H11 = 
1 
3 
F0 − G1 − 

1 
2 
ζ + 2 F0 + G1( ) + 2 2 

1 

2 
ζ⎛ 

⎝⎜ 
⎞ 
⎠⎟ 

⎡ 
⎣⎢ 

⎤ 
⎦⎥ 

= F0 + 
1 
3 
G1 + 

1 
2 
ζ ← 

3 
2 
3 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 1 

′H12 = − 
1 

2 
ζ + 2 F0 + G1 − F0 − G1 − 

1 
2 
ζ⎛ 

⎝⎜ 
⎞ 
⎠⎟ 

⎡ 
⎣⎢ 

⎤ 
⎦⎥ 

= 2 2G1 

′H22 = 
1 
3 
2 F0 − G1 − 

1 
2 
ζ⎛ 

⎝⎜ 
⎞ 
⎠⎟ + F0 + G1( ) − 2 2 

1 

2 
ζ⎛ 

⎝⎜ 
⎞ 
⎠⎟ 

⎡ 
⎣⎢ 

⎤ 
⎦⎥ 

= F0 − 
1 
3 
G1 − ζ ← 

1 
2 
1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 1 

H(1) = 
F0 + 

1 
3 
G1 + 

1 
2 
ζ 2 2G1 

2 2G1 F0 − 
1 
3 
G1 − ζ 

⎡ 

⎣

⎢ 
⎢ 
⎢
⎢ 

⎤ 

⎦

⎥ 
⎥ 
⎥
⎥ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

0 0 
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J = 2, sp 

U = 1 

H(2) = F0 − G1 + 
1 
2 
ζ ← 

3 
2 
1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 2 

Most of the work done on the last four pages can also be found in the notes for Lecture #7. 

H11 = F0 + 10F2 

H12 = − 2ζ 

H22 = F0 − 5F2 − ζ 

′H11 = 
1 
3 
F0 + 10F2( ) + 

2 
3 
F0 − 5F2 − ζ ( ) + 

2 
3 
2 − 2ζ( ) 

= F0 − 2ζ ← 
1 
2 
1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 0 

′H12 = 
2 
3 
15F2 + ζ( ) + 

1 
3 
− 2ζ( ) = 5 2F2 

′H22 = 
2 
3 
F0 + 10F2( ) + 

1 
3 
F0 − 5F2 − ζ ( ) − 

2 
3 
2 − 2ζ( ) 

= F0 + 5F2 + ζ ← 
3 
2 
3 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 0 

H(0) = 
F0 − 2ζ 5 2F2 

5 2F2 F0 + 5F2 + ζ 

⎡ 

⎣
⎢ 
⎢

⎤ 

⎦
⎥ 
⎥

p2, J = 1
U = 1 

H(1) = F0 − 5F2 − 
1 
2 
ζ ← 

3 
2 
1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 1 

p2, J = 2 

1 
3 

2 
3 

− 2 
3 

1 
3 

⎡ 

⎣

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦

⎥ 
⎥ 
⎥ 
⎥ 

a 3 
2 
1 
2 

⎛ 
⎝⎜

⎞ 
⎠⎟ 2 

b 3 
2 
3 
2 

⎛ 
⎝⎜

⎞ 
⎠⎟ 2 

⎡ 

⎣

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦

⎥ 
⎥ 
⎥ 
⎥ 

= 
α 3 P2 

β 1 D2 

⎡ 

⎣
⎢ 
⎢

⎤ 

⎦
⎥ 
⎥

↑U 
x 

x ′ 
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U† = 

1 
3

− 2 
3 

2 
3 

1 
3 

⎡ 

⎣

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦

⎥ 
⎥ 
⎥ 
⎥ 

= 
1 
3 

1 − 2 

2 1 

⎡ 

⎣
⎢ 
⎢

⎤ 

⎦
⎥ 
⎥

H = 
1 
3 

1 − 2 

2 1 

⎡ 

⎣
⎢ 
⎢

⎤ 

⎦
⎥ 
⎥

H11 H12 

H12 H22 

⎡ 
⎣
⎢

⎤ 
⎦
⎥

1 2 

− 2 1 

⎡ 

⎣
⎢ 
⎢

⎤ 

⎦
⎥ 
⎥
= 
1 
3 

1 − 2 

2 1 

⎡ 

⎣
⎢ 
⎢

⎤ 

⎦
⎥ 
⎥

H11 − 2H12 2H11 + H12 

H12 − 2H22 2H12 + H22 

⎡ 

⎣
⎢ 
⎢

⎤ 

⎦
⎥ 
⎥

= 
1 
3 

H11 + 2H22 − 2 2H12 2 H11 − H22( ) − H12 

2 H11 − H22( ) − H12 2H11 + H22 + 2 2H12 

⎡ 

⎣
⎢ 
⎢

⎤ 

⎦
⎥ 
⎥

′H11 = 
1 
3 
F0 − 5F2 + 

1 
2 
ζ + 2 F0 + F2( ) − 2 2 

ζ 

2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 

⎡ 
⎣⎢ 

⎤ 
⎦⎥ 

= F0 − F2 − 
1 
2 
ζ ← 

3 
2 
1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 2 

′H12 = 
1 
3 

2 −6F2 + 
1 
2 
ζ⎛ 

⎝⎜ 
⎞ 
⎠⎟ − 

1 

2 
ζ⎡ 

⎣⎢ 
⎤ 
⎦⎥ 
= −2 2F2 

′H22 = 
1 
3 
2 F0 − 5F2 + 

1 
2 
ζ⎛ 

⎝⎜ 
⎞ 
⎠⎟ + F0 + F2( ) + 2 2 

1 

2 
ζ⎛ 

⎝⎜ 
⎞ 
⎠⎟ 

⎡ 
⎣⎢ 

⎤ 
⎦⎥ 

= F0 − 3F2 + ζ ← 
3 
2 
3 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 2 

H J = 2( ) = 
F0 − F2 −

1 
2 
ζ −2 2F2 

−2 2F2 F0 − 3F2 + ζ 

⎡ 

⎣

⎢ 
⎢
⎢ 

⎤ 

⎦

⎥ 
⎥
⎥ 

sp configuration 

J = 0 , U = 1 

H 0( ) = F0 − G1 − ζ 

J = 1, U = 

1 
3

− 2 
3 

2 
3 

1 
3 

⎡ 

⎣

⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦

⎥ 
⎥ 
⎥ 
⎥ 

3 
2 
1 
2 

⎛ 
⎝⎜

⎞ 
⎠⎟ 1 

1 
2 
1 
2 

⎛ 
⎝⎜

⎞ 
⎠⎟ 1 

3 P1 

1 P1 
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H( ) = 
1 1 2 H11 H12 1 2

 1
⎤
⎥
⎥⎦ 

−
H H3 2 1 2 112 22 

⎡
⎢
⎢⎣ 

⎤
⎥
⎦ 

⎡
⎢
⎣ 

⎤
⎥
⎥⎦−

⎡
⎢
⎢⎣ 

4.	 Use perturbation theory as in Problem 2 to compute the transition intensities near the j–j limit
(F2  ζ or G1  ζ). You should discover that destructive interference starts to turn off the 
transitions that will become the forbidden 3P2 ← 1P1 and 3P0 ← 1P1 transitions in the L–S–J limit. 

Transition amplitudes in the j – j basis [units of µ].
See also C + S, p. 265 

sp \ p2 1 
2 
1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 0 

3 
2 
3 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 0 

3 
2 
1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 1 

3 
2 
1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 2 

3 
2 
3 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 2 

3 
2 
1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 2 

0 0 −5 5 50 

3 
2 
1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 1 

0 − 20 − 5 −5 50 

1 
2 
1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 1 

− 20 0 10 − 50 0 

1 
2 
1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 0 

0 0 20 0 0 

Perturbed j – j basis functions (use result of Problem Set 2, #3). 

p2 

‘ 1 
2 
1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 0

’ 
= 
1 
2 
1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 0 

− 
5 2F2 

5F2 − 3ζ 
3 
2 
3 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 0 

‘ 3 
2 
3 
2

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 0

’ 
= 
3 
2 
3 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 0 

+ 
5 2F2 

5F2 − 3ζ 
1 
2 
1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 0 

‘ 3 
2 
1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 1

’ 
= 
3 
2 
1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 1 

‘ 3 
2 
1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 2

’ 
= 
3 
2 
1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 2 

+ 
2 2F2 

4F2 −
3 
2
ζ 

3 
2 
3 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 2 

‘ 3 
2 
3 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 2

’ 
= 
3 
2 
3 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 2 

− 
2 2F2 

4F2 −
3 
2
ζ 

−α 
  

3 
2 
1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 2 
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sp
‘ 3 
2 
1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 2

’ 
= 
3 
2 
1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 2 

‘ 3 
2 
1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 1

’ 
= 
3 
2 
1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 1 

+ 
2 2G1 

2 
3
G1 +

3 
2
ζ 

1 
2 
1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 1 

‘ 1 
2 
1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 1

’ 
= 
1 
2 
1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 1 

− 
2 2G1 

2 
3
G1 +

3 
2
ζ 

−β 
 

3 
2 
1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 1 

‘ 1 
2 
1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 0

’ 
= 
1 
2 
1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 0 

p2: 

‘ 3 
2 
3 
2 

⎛ 
⎝⎜

⎞ 
⎠⎟ 2 

’ 
→ 3 P2 

‘ 1 
2 
1 
2 

⎛ 
⎝⎜

⎞ 
⎠⎟ 0 

’ 
→ 3 P0 

sp: 
‘ 3 
2 
1 
2 

⎛ 
⎝⎜

⎞ 
⎠⎟ 1 

’ 
→ 1 P1 

‘ 3 
2 
3 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 2

’ 
µ̂
‘ 3 
2 
1 
2

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 1

’ 
= 

3 
2 
3 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 2 

µ̂ 3 
2 
1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 1 

+α 3 
2 
1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 2 

µ̂ 3 
2 
1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 1 

+ β 3 
2 
3 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 2 

µ̂ 1 
2 
1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 1 

0 

+0 αβ( ) 
‘ 3 

2 
3 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 2 

’ 
µ̂

‘ 3 
2 

1 
2 

⎛ 
⎝⎜ 

⎞ 
⎠⎟ 1 

’ 
= 50 − 5α ; α = 

−2 2F2 

4F2 − 
3 
2 
ζ 
> 0 

because ζ  F2

 near j-j limit 
⎛ 
⎝⎜ 

⎞ 
⎠⎟ 

Correlates to 3P2 ← 1P1 transition and approaches zero intensity in L–S–J limit. 
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’‘’‘ ⎞ ⎛ 
⎠⎟ ⎝⎜ 

1
2 

3
2 

⎞

⎠⎟
1 

⎛

⎝⎜

1
2 

1
2 

1
2 

3
2 

1
2 

1
2 

⎞ ⎛ 
⎠⎟ ⎝⎜ 

⎞ ⎛ 
⎠⎟ ⎝⎜µ̂
 µ̂
=


1 0 

+α
 ⎛
⎝⎜

3
2 

3
2 

⎞ ⎛ 
⎠⎟ ⎝⎜ 
1
2 

3
2 

1
2 

1
2 

1
2 

1
2 

⎞ ⎛ 
⎠⎟ ⎝⎜ 

⎞ ⎛ 
⎠⎟ ⎝⎜ 

⎞

⎠⎟
µ̂
 µ̂
 + 0(αβ)
+ β


0 1 0 

3
2

2 2G1

1 

ζG1 +
= + 20α − 20β = 20 (α − β); β = − 

5. 

2
3

Positronium is an atom-like system formed from an electron and a positron. Predict the energy-
level pattern and the wavelengths of some of the electronic transitions of positronium.

Predict the wavelengths of some electronic transitions in positronium: The energy level pattern will be
hydrogenic. 

E µ,n) ∝ 
µn
1 
2 

; µ = reduced mass.( 

For µ  me, µ = 
Mme ≈ meM + me 

me
2 

= 
1

For M = me, µ = 
2m 2

me

e


⎞
⎠

We can calculate the positronium energy levels by scaling the Rydberg Formula: 

1−

ν = 
1
2 
R∞ 

⎛
⎝⎜ n
1
2 m

1
2 

⎞
⎠⎟ = 54839 ⎛⎝⎜ n

1
2 m

1
2 

⎞
⎠⎟ cm

−1− −pos 

⎛
⎝

1 = 54839 ⎜ n
1
2 m2 ⎟ ; n = principal quantum number of terminus state, m > n.

λ 

m2 ⎞
“Lyman” series: 

λ 
1 

⎝⎜
⎛ 

m
1
2 

⎞
⎠⎟ cm

−1; λ = 1823.5 
⎝⎜
⎛ 
m2 − 1⎠⎟ 

Å= 54839 1 − 

1 1 1 ⎞ ⎛ m2 ⎞
⎠⎟ 
Å“Balmer” series; = 54839 ⎝⎜

⎛ 
4 
− 
m2 ⎠⎟ cm

−1; λ = 7294.1
⎝⎜ m2 − 4λ 

m Lyman Balmer 
2 2431.4Å – – – – –

2051.4Å 13129.3Å3 near 
IR4 UV 1945.1Å 9725.5Å 

5  8683.4Å 
6  8205.9Å 

redSeries Limit 1823.5Å 7294.1Å 

near 
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6.	 Without using microstates, derive the ground-state terms and energy levels for the transition
elements of the third row (Sc through Zn) of the periodic table. (Remember Cr and Cu are
exceptions to the regular Aufbau filling of electrons into orbitals.)

1) Hund’s first rule: states with the highest spin multiplicity are lowest in energy.
2) Hund’s second rule: for states with identical S, highest L is lowest in energy. 

Element Config. Ground state 
Sc s2d 2D 
Ti s2d2 3F (L = 2 + 1)
V s2d3 4F (L = 2 + 1 + 0)
Cr sd5 7S 1/2 filled shell is particularly stable
Mn s2d5 6S (L = 2 + 1 + 0 – 1 – 2 = 0)
Fe s2d6 5D (L = 2 – 1 + 0 + 1)
Co s2d7 4F (like V)
Ni s2d8 3F (like Ti)
Cu sd10 2S full d shell is particularly stable 

See Bernath, Chapter 5, pages 31 and 32. 

7.	 (a) What are 〈r〉 and 〈1/r〉 for the 1s orbital of hydrogen? 
1r and for Hydrogen. You can do the integrals yourself or look them up. See, for instance,n r n

Condon and Shortley, page 117. 

r = 3n2 −   + 1a
2
0 [ ( )] 
3 =r 1s 2
a0 

1 1 1 = 
r a0 n

2 

1 1 = 
r 1s a0 

(b) What is the transition dipole moment in debye for the 2pz ← 1s transition of hydrogen? 
Calculate µ(2p ← 1s)

P = –er cos θ 

µ = 2p P r,θ) 1s ( 
Using the equations and tables on page 132 and 133 of C & S 

3 

−1 ]1/2 [28273−11µ = 
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8.	 In the atomic spectrum of neutral Ca there is a normal multiplet of six lines at 0, 14, 36, 106,
120, and 158 cm–1 above the lowest frequency line of the multiplet. What are the quantum
numbers of the states involved in the transition? 

Bernath, Chapter 5, #15 

I first tried the problem very late at night and I found it completely intractable even though I knew it was 
easy. It seems much more straightforward at 11:00 AM. Check Lecture 8 notes, page 3 for insight. 

A six line pattern is characteristic of a 3D ← 3P transition. This is plausible for Ca, because Ca has two 
e– outside of a closed 3p shell, [Ar]. 

Step 1: Numerology… 

One can make some educated guesses based on the separations between observed lines. 

36 − 14 = 22⎫ 22 3 
14 − 0 = 14 ⎭

⎬ 14 
= 1.6  

2 
This could be the signature of J = 3, 2, and 1 of a 3D state. 

158 − 106 = 52⎫106 2

106 − 0 = 106 ⎭

⎬ 52 
= 2.04  1


This could be the signature of J = 2, 1, 0 of a 3P state. 

Assuming this is correct, are the ζ’s calculated plausible? 

For the ‘3D’, 3ζ = 22 cm–1, 2ζ = 14 cm–1 ∴ ζd  7.0 cm–1. 

For the ‘3P’, 2ζ = 106 cm–1, ζ = 52 cm–1 ∴ ζp  53 cm–1. 

This is reasonable, as ζ decreases with increasing . Also, ζ decreases with increasing n, so if the 3D 
state is on top, then this is even better. 

Assume: 

J E/cm–1 

3 x + 36

3D
 2 x + 14


1 x


2 158

3P
 1 52


0 0
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Transition Line position/cm–1 

3D1 – 3P0 x 
3D2 – 3P1 x + 14 – 52 = x – 38 
3D3 – 3P2 x + 36 – 158 = x – 122 
3D1 – 3P1 x – 52 
3D2 – 3P2 x + 14 – 158 = x – 144 
3D1 – 3P2 x – 158 

listing transitions red blue: 

14 

36 

106 

120 

158 

x – 158 x – 144 x – 122 x – 52 x – 38 x 

This assignment appears to be correct. 

9.	 The following wavenumbers are listed in Moore’s tables for the n2P° – 32S transitions of Na: 

n J Wavenumber (cm–1)
5 0.5 35,040.27
5 1.5	 35,042.79
6 0.5	 37,296.51
6 1.5	 37,297.76
7 0.5	 38,540.40
7 1.5	 38,541.14
8 0.5	 39,298.54
8 1.5	 39,299.01
9 0.5	 39,794.53
9 1.5	 39,795.00
10 0.5 and 1.5 40,137.23 

(a)	 Correct the line positions for the effect of spin-orbit coupling and determine ζ for each of 
the excited n2P terms of Na. 

Bernath, Eq. (5.97)
HSO = ζ L·S 

= 
2
1 ζ[J(J + 1) − L(L + 1) − S(S + 1) ] 

This is the np Rydberg series, so L = 1, S = 
1
2 
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1 ⎡ 11⎤HSO = 
2 
ζ
⎣⎢
J(J + 1) − 

4 ⎦⎥ 
2

EJ+1 – EJ = ζ(J + 1) ; ζ = ∆ E(J +1)− J3 
E  is the degeneracy weighted average of J = 

3
2 and J = 2

1
:np

Ω 3 
2 

= 4 , Ω1 
2 

= 2 ΩJ( 
+ 2E 1 

Enp = 
4E 3 

2 

n 

6 
2 

Enp cm
−1 ζnp cm

−1 

 are degeneracies ) 

5 35041.95 1.12 
6 37297.34 0.55 
7 38540.89 0.33 
8 39298.85 0.21 
9 
10 

39794.84 
40137.23 

0.21 
0.00 

[Note: I’ve defined E(32S1/2) = 0] 

(b)	 Devise an extrapolation procedure to determine the ionization potential and the quantum
defect for this Rydberg series.

Extrapolation of np Rydberg series to determine ionization potential. 

The energies of the np orbitals can be fit to the following formula: 

Enp = IP − 
(n − 

R
µp )2 

IP = Na Ionization Potential


R = Rydberg constant [109734.72 cm–1 for Na]


µp = Quantum defect for the np series


I tried several different fits using the Field group’s non-linear least squares fitting program. I 

first tried a fit giving each E– equal statistical weight. The resultant fit had systematic residuals.
This comes as no surprise, as the Rydberg formula is more accurate at high n. A second fit was 
done with the 5p, 6p, and 7p levels de-weighted. The uncertainty in the fitted value of the IP
decreased considerably. 

Fit #1 Fit #2 
δ(Enp ) = 0.1 cm−1 δ(Enp ) =  large for low n 
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IP = 41452.7(9) cm–1 IP = 41450.3(1) cm–1 

µp = 0.8623(6) µp = 0.8583(2) 

A better fit could be obtained by systematically de-weighting the lower np levels and by observing and
including higher np levels. 

The IP listed in Charlotte Moore’s tables is 41449.65 cm–1, over six standard deviations off from the
value determined by fit #2. 

Results of the two fits follow… 

NUMBER OF DATA POINTS: 6 FIT #1 
Na np quantum defect determination 

INITIAL PARAMETERS 
1 IP 0.41451500D+05 cm–1 

2 Ryd 0.10973472D+06 cm–1 

3 mu 0.86070000D+00 

OUTPUT FROM LAST LSQ PASS 

FINAL STANDARD 
NUMBER NAME VALUE DEVIATION 

1 IP 0.41452684D+05 0.9303D+00 cm–1 

Ryd 0.10973472D+06 cm–1 

2 mu 0.86231148D+00 0.6148D–03 

OBSERVED AND CALCULATED TRANSITION FREQUENCIES 

Line J′ RK BK J′′ RK BK EXPT CALC EXPT-CALC SD units 
5p 0.0 1 2 0.0 1 1 35041.950 35043.121 –1.171 0.100 cm–1 

6p 1.0 1 2 0.0 1 1 37297.340 37295.412 1.928 0.100 cm–1 

7p 2.0 1 2 0.0 1 1 38540.890 38539.725 1.165 0.100 cm–1 

8p 3.0 1 2 0.0 1 1 39298.850 39298.768 0.082 0.100 cm–1 

9p 4.0 1 2 0.0 1 1 39794.840 39795.610 –0.770 0.100 cm–1 

10p 5.0 1 2 0.0 1 1 40137.230 40138.454 –1.224 0.100 cm–1 

NUMBER OF DATA POINTS: 6 
Na np quantum defect determination 

FIT #2 
fit residual uncertainty 

in E 

INITIAL PARAMETERS 

1 
2 
3 

IP 
Ryd 
mu 

0.41451500D+05 
0.10973472D+06 
0.86070000D+00 

cm–1 

cm–1 

OUTPUT FROM LAST LSQ PASS 
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FINAL STANDARD 
NUMBER NAME VALUE DEVIATION 

1 IP 0.41450306D+05 0.9915D–01 cm–1 

Ryd 0.10973472D+06 cm–1 

2 mu 0.85828733D+00 0.2182D–03 

OBSERVED AND CALCULATED TRANSITION FREQUENCIES 

Line J′ RK BK J′′ RK BK EXPT CALC EXPT-CALC SD units 
5p 0.0 1 2 0.0 1 1 35041.950 35053.191 –11.241 15.000 cm–1 

6p 1.0 1 2 0.0 1 1 37297.340 37299.538 –2.198 5.000 cm–1 

7p 2.0 1 2 0.0 1 1 38540.890 38541.163 –0.273 1.000 cm–1 

8p 3.0 1 2 0.0 1 1 39298.850 39298.816 0.034 0.100 cm–1 

9p 4.0 1 2 0.0 1 1 39794.840 39794.869 –0.029 0.100 cm–1 

10p 5.0 1 2 0.0 1 1 40137.230 40137.233 –0.003 0.100 cm–1 
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Non-Linear Least Squares FIT Residuals:

Ecalc = IP – Ry(n*)–2


98765 

= Fit #1 

= Fit #2 

cm–1 2 

0 

Eobs – Ecalc 
–2 

–4 

–6 

–8 

–10 

n* Effective Principal Quantum Number 

The spin-orbit operator for the hydrogen atom is 

H 
SO = ξ(r)̂·̂s 

ξ(r) = 
1 

2µ2 c2 

1 
r 
∂V 
∂r 

Bernath (5.46) 

1 Ze2 

= 
2µ2 c2 4πz0 r

3 

For np orbitals of H, 
ζ = np ξ(r) np ∝ n−3 

np 

Alkalis, like Na, are nearly one-electron atoms like H, so we might expect ζnp to scale similarly in Na;
possibly as n✭–3. The n✭ dependence of ζnp can be determined by doing a log-log plot of ζnp vs. n✭ . 

Assume ζnp = Ap (n✭ )− k 

lnζ = lnA − k lnn✭ 

np p

The 10p orbital cannot be included because the spin-orbit splitting is not resolved. I did one fit 
including the 9p and the other without it.

n* Dependence of Spin-Orbit Constant 
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ζnp = Ap(n*)–k 

kfit = 2.6 

n* Dependence of Spin-Orbit Constant 

ζnp = Ap(n*)–k 

kfit = 3.1 

10.	 On the basis of first-order perturbation theory, the hyperfine structure of the ground electronic
state of the H atom involves the interaction of the spins of the electron and proton with one
another, and with any applied magnetic fields. It is possible to integrate out the spatial
coordinates and to consider the system as two spins S = I = 1/2 governed by the spin
Hamiltonian 

H spin = 
b


F
2 
I · S + 

kS S z + 
kI Iz ≡ H hfs + H Zeeman ,

  

in which bF, kS, and kI are given by 

bF = 
2µ
3
0 geµBgIµI ψ1s (0) 

2 

kS = geµBB0 

kI = −gIµNB0 

and ge, gI, µB, µN are the g-factors and magnetons for the electron and the proton. The spin Hamiltonian 
can be split into two parts, bF 

I · S / 2 [referred to as the hyperfine structure (hfs) Hamiltonian], and 
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(kSSz + kI Iz )   (referred to as the Zeeman Hamiltonian). SI units are used and µ0 = 4π × 10–7 N A–2 is 
the permeability of vacuum. 

(a)	 Calculate the values of bF, kS, and kI (the latter two as multiples of the field strength, B0) for the
hydrogen 1s state.

Calculate the values of bF, ks, and kI 

= (0) 2bF 

2
3 
µ0geµBgIµI ψ1s 

µ0 = 4π·10−7 NA−2 

µB = 9.274·10−24 JT−1 

µN = 5.051·10−27 JT−1 

ge = 2.0023 

gI = 5.5856 

− r 
ψ1s (r) = 

π
1
1/2 a

1
0
3/2 
e a0 ; ψ1s (0) 

2 = 
1 
πa0

3 

Unit check: 

m−3(NA−2 )(Nm)2 (NA−1m−1 )−2 
= Nm = J 

1.60210 · 10–19J = 8065.7 cm–1 · 29979 MHz/cm–1 

6.6257 · 10–28 J = 1 MHz 

b

8
3
·10−7 ·2.0023·9.274·10−24 ·5.5856·5.051·10−27 (0.529177·10−10 )−3 

F = MHz 
6.6257·10−28 

bF = 1422.9 MHz 

kI = −gIµNB0 

−5.5856·5.051·10−27 

( / Tesla )MHz = B06.6257·10−28


= −42.6 B( 0 / Tesla )MHz


kS = geµBB0 

2.0023·9.274·10−24 

(B0 / Tesla )MHz = 
6.6257·10−28


= 28026 B( 0 / Tesla )MHz
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(b)	 Now consider an isolated H atom (with no applied magnetic field). Show that the matrix of H hfs 
with respect to the mSmI  basis is 

⎛
 ⎞


=Hhfs 
bF 

4


⎜
⎜
⎜
⎜⎝


1 0 0 0


0 −1 2 0


0 2 −1 0


0 0 0 1


⎟
⎟
⎟
⎟⎠


.


Find the energies and eigenstates in this basis and construct the matrix X that diagonalizes Hhfs. 
What will be the eigenstates |FMF〉 of H hfs  expressed in terms of the mSmI  states? 	Give a 
discussion of this in terms of vector coupling. 

The eigenvectors of H 
hfs  are listed on the next page. 

1 0 0 0⎡ ⎤


0 

The eigenvalues of H 
hfs  are –4

3bF and 4
1bF. The triplet, F = 1, lies at higher energy. The splitting

between the F = 0 and F = 1 levels is bF = 1422.9 MHz. 

⎢ 
⎢
⎢
⎢
⎣

⎥ 
⎥
⎥
⎥
⎦


0 2−1/2 2−1/2 0
X =


0 2−1/2 −21/2 0

0 0 1


program matgen
integer r
double precision a(4,4), bf, ks, ki, h
write(5,*) ‘Magnetic field? [Units of Tesla]’
read(5,*) h
bf = 1422.9 
ki = –42.6*h 
ks = 28026*h 
*** | mI, mS > 

***	 | 1/2, 1/2 >, | 1/2, –1/2 >, | –1/2, 1/2 >, | –1/2, –1/2> 

a(1,1) = 0.25*bf + 0.50*ki + 0.50*ks

a(1,2) = 0.00d0

a(1,3) = 0.00d0

a(1,4) = 0.00d0


*** 
a(2,1) = a(1,2)
a(2,2) = –0.25*bf + 0.50*ki – 0.50*ks
a(2,3) = 0.50*bf
a(2,4) = 0.00d0

*** 
a(3,1) = a(1,3) 
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a(3,2) = a(2,3)
a(3,3) = –0.25*bf – 0.50*ki + 0.50*ks
a(3,4) = 0.00d0

*** 
a(4,1) = a(1,4)
a(4,2) = a(2,4)
a(4,3) = a(3,4)
a(4,4) = 0.25*bf – 0.50*ki – 0.50*ks 

write(5,110) ‘Magnetic Field / Tesla = ’,h
open(file=‘matrix.dat’, unit=2, status=‘unknown’)
do r = 1,4

write(2,100) a(r,1), a(r,2), a(r,3), a(r,4)
write(5,100) a(r,1), a(r,2), a(r,3), a(r,4)

enddo 
close(2) 

100 format(4f10.2)
110 format(a30,f6.3) 

end 

MATRIX BEFORE DIAGONALIZATION: 
Magnetic Field / Tesla = .000 

|1〉 |2〉 |3〉 |4〉
〈1| 355.73000 .00000 .00000 .00000 
〈2| .00000 –355.73000 711.45000 .00000 
〈3| .00000 711.45000 –355.73000 .00000 
〈4| .00000 .00000 .00000 355.73000 

EIGENVALUES & EIGENVECTORS: 
# 1 # 2 # 3 # 4 

Value: –1067.1800 355.7200 355.7300 355.7300 
Vector: 
〈1| .00000 .00000 1.00000 .00000 
〈2| .70711 .70711 .00000 .00000 
〈3| –.70711 .70711 .00000 .00000 
〈4| .00000 .00000 .00000 1.00000 
MATRIX BEFORE DIAGONALIZATION: 

Magnetic Field / Tesla = .001 
|1〉 |2〉 |3〉 |4〉

〈1| 369.72000 .00000 .00000 .00000 
〈2| .00000 –369.76000 711.45000 .00000 
〈3| .00000 711.45000 –341.69000 .00000 
〈4| .00000 .00000 .00000 341.7300 

EIGENVALUES & EIGENVECTORS: 
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# 1 # 2 # 3 # 4 
Value: –1067.3134 341.7300 355.8634 369.7200 
Vector: 
〈1| 
〈2| 
〈3| 
〈4| 

.00000 
–.71405 
.70010 
.00000 

.00000 

.00000 

.00000 
1.00000 

.00000 

.70010 

.71405 

.00000 

1.00000 
.00000 
.00000 
.00000 
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MATRIX BEFORE DIAGONALIZATION: 
Magnetic Field / Tesla = .005 

〈1| 
〈2| 
〈3| 
〈4| 

|1〉
425.68000 

.00000 

.00000 

.00000 

|2〉
.00000 

–425.90000 
711.45000 

.00000 

|3〉
.00000 

711.45000 
–285.55000 

.00000 

|4〉
.00000 
.00000 
.00000 

285.77000 

EIGENVALUES & EIGENVECTORS: 
# 1 # 2 # 3 # 4 

Value: –1070.6275 285.7700 359.1775 425.6800 
Vector: 
〈1| 
〈2| 
〈3| 
〈4| 

.00000 
–.74100 
.67151 
.00000 

.00000 

.00000 

.00000 
1.00000 

.00000 

.67151 

.74100 

.00000 

1.00000 
.00000 
.00000 
.00000 

In the absence of an external field, the spin of the proton and the electron spin are strongly coupled when
anti-parallel. 

(c)	 Determine (in terms of bF, kS, kI) the matrices with elements m′ Sm′ I H spin m′′ Sm′′ I  and 

in the general case when an applied field, B0, is present.F′M′ F H spin F′′M′′ F

⎤
⎥
⎥ 
⎥
⎥
⎦

−−1 1 1 1 1 1 1 1mI,ms 2 2 2 
− 
2 2 2 2 

− 
2 

1 
4 bF + 12 kI + 21 k 0 0	 0⎡ s 

⎢
⎢ 
⎢
⎢
⎣

1 10 4 bF + 12 kI − 12 ks 2 bF	 0
H = 

0	 1
2 bF − 14 bF − 12 kI + 12 k 0s 

10 0	 0 4 bF − 12 kI − 12 ks 

(d)	 From the results of part (c) show how the zero field |FMF〉 levels split in a weak magnetic field.
In this case it is necessary to treat the magnetic field as a perturbation, namely 

H
(0) 

= 
b


F
2 
I · S, H

(1) 
= 
kS Sz + 

kI I. 
	  

Give a plot of the splitting of these levels as calculated earlier for fields, B0, from 0 to 0.2 T (put
your energy scale in MHz).

See printouts of Fortran program on Athena and graph created, using program output, with ‘Igor’ on a
Mac. 
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
Notice that at 0.2 Tesla (2000 Gauss) 


I  and s  are almost entirely decoupled. 

MATRIX BEFORE DIAGONALIZATION: 
Magnetic Field / Tesla = .100 

|1〉 |2〉 |3〉 |4〉
〈1| 1754.90000 .00000 .00000 .00000 
〈2| .00000 –1759.16000 711.45000 .00000 
〈3| .00000 711.45000 1047.70000 .00000 
〈4| .00000 .00000 .00000 –1043.44000 

EIGENVALUES & EIGENVECTORS: 
# 1 # 2 # 3 # 4 

Value: –1929.1902 –1043.4400 1217.7302 1754.9000 
Vector: 
〈1| .00000 .00000 .00000 1.00000 
〈2| –.97261 .00000 .23244 .00000 
〈3| .23244 .00000 .97261 .00000 
〈4| .00000 1.00000 .00000 .00000 

MATRIX BEFORE DIAGONALIZATION: 
Magnetic Field / Tesla = .010 

|1〉 |2〉 |3〉 |4〉
〈1| 495.64000 .00000 .00000 .00000 
〈2| .00000 –496.07000 711.45000 .00000 
〈3| .00000 711.45000 –215.38000 .00000 
〈4| .00000 .00000 .00000 215.81000 

EIGENVALUES & EIGENVECTORS: 
# 1 # 2 # 3 # 4 

Value: –1080.8855 215.8100 369.4355 495.6400 
Vector: 
〈1| .00000 .00000 .00000 1.00000 
〈2| –.77251 .00000 .63501 .00000 
〈3| .63501 .00000 .77251 .00000 
〈4| .00000 1.00000 .00000 .00000 
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MATRIX BEFORE DIAGONALIZATION: 
Magnetic Field / Tesla = .200 

|1〉 |2〉 |3〉 |4〉
〈1| 3154.07000 .00000 .00000 .00000 
〈2| .00000 –3162.59000 711.45000 .00000 
〈3| .00000 711.45000 2451.13000 .00000 
〈4| .00000 .00000 .00000 –2442.61000 

EIGENVALUES & EIGENVECTORS: 
# 1 # 2 # 3 # 4 

Value: –3251.3516 –2442.6100 2539.8916 3154.0700 
Vector: 
〈1| .00000 .00000 .00000 1.00000 
〈2| –.99231 .00000 .12380 .00000 
〈3| .12380 .00000 .99231 .00000 
〈4| .00000 1.00000 .00000 .00000 

Hydrogen 1s Levels in a Magnetic Field
F,mF ……… ms,m1 

4 

2 

0 

–2 

–4 

0.00 0.05 0.10 0.15 0.20 

| 1/2, 1/2 〉

| 1/2, −1/2 〉

| 0, 0 〉 | −1/2, −1/2 〉

| −1/2, 1/2  〉

| 1, 0 〉
| 1, −1 〉

| 1, 1 〉

Magnetic Field / Tesla 
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(e)	 Determine the energy levels in a strong magnetic field of 1 T, regarding the hyperfine interaction
as a small perturbation, that is, 

H
(0) 

= 
kS S z + 

kI Iz , H
(1) 
= 
b


F
2 
I · S. 

	  

In this case show explicitly that the first-order perturbation spin functions are 

(1) (0) (1) (0)ψ1 = φ1 , ψ 4 = φ4 , 

(1) (0) + 
bF (0),ψ 2 = φ2 2 geµBB0 + gIµNB0 ) 

φ3( 
(1) (0) − 

bF (0)ψ 3 = φ3 2 ge ) φ2 ,( µBB0 + gIµNB0 

while the second-order energies corresponding to these four functions are 

E1 = 
2
1 geµBB0 − 

2
1 gIµNB0 + 

4
1 bF , 

E2 = 
2
1 geµBB0 + 

2
1 gIµNB0 − 

4
1 bF + 

4 g( eµBB0
b
+ 
F
2 

gIµNB0 ) 
, 

E3 = − 
2
1 geµBB0 − 

2
1 gIµNB0 − 

1 bF − ( 
bF
2 

) ,4 4 geµBB0 + gIµNB0 

= −E4	 2
1 geµBB0 + 

2
1 gIµNB0 + 

4
1 bF . 

The electron spin resonance (ESR) spectrum for the hydrogen atoms has only two equally intense
lines, because the magnetic moment of the proton is too small to contribute to the intensity, and
because the mixing of the |mSmI〉 states in the strong field is small. Show explicitly with
numerical results that this is indeed the case for the problem that you are considering. Calculate 
the splitting of the two ESR lines in MHz, and compare your result with the experimentally
observed value of 1420.4 MHz. What is the corresponding wavelength? How could you use this
calculation to substantiate the existence of interstellar clouds of atomic hydrogen? 

|ms, mI〉

1 1 = 
2 2 

E1
0 = 

1 1 
2 
(k + kI ) = 

2 
B0 (g µB − gIµN )s e 
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1 12 = 
2 
− 
2 

E2
0 = 

1 1 
2 
(k − kI ) = 

2 
B0 (g µB + gIµN )s e 

3 = − 
1 1 
2 2 

E0
3 = − 

1 1 
2 
(k − kI ) = − 

2 
B0 (g µB + gIµN )s e 

1 14 = − 
2 
− 
2


= −
E0
4 2

1 (ks + kI ) = − 
2
1 B0 (geµB − gIµN ) 

E2
0 − E0

3 = B0 (g µB + gIµN )e 

(1) = 
1 bF (1) H23 2 all other Hij = 0 

(1) = H32 ψ i = ψ i ° + ∑ Eo
i

H
− 
ij 

Eo
j 

ψ j ° 
j≠ i 

1 = 1 ° 

2 = 2 ° + 
2B0 (geµ

b
B

F 

+ gIµN ) 
3 ° 

3 = 3 ° − 
2B0 (g µ

b
B

F 

+ gIµN ) 
2 ° 

e 

4 = 4 ° 

(1) E1 = E1
(0) + H11 ; H(1)

ij are the elements of H 
hfs  given in part b)

1 1 = 
2 
B0 (g µB − gIµN ) + 

4 
bFe 

(1) 
(0 ) + H(1) 

22 +
[H23 ]2 

E2 = E2 Eo
2 − Eo

3 

1 1 bF
2 

= e2 
B0 (g µB + gIµN ) − 

4 
bF + 

4B0 (g µB + gIµN )e 
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(1) 
(0 ) + H(1) 

33 +
[H32E3 = E3 E3 − E

]2
2 

o o 

1 1 bF
2 

= − e2 
B0 (g µB + gIµN ) − 

4 
bF − 

4B0 (g µB + gIµN )e 

E4 = E4 

(1) (0 ) + H44 

1 1 = − bF2 
B0 (geµB − gIµN ) + 

4 

The calculated position of the F = 0 → F = 1 transition is bF = 1422.9 MHz. 

The transitions are from 3 → 1  and 4 → 2 . 

ν 1 = E1 − E3 = 
2
1 B0 (geµB − gIµN ) + 

2
1 B0 (geµB + gIµN ) + 

2
1 bF + 

4B0 (g µ
b
B

F
2 

+ gIµN )e 

ν 2 = E2 − E4 = 
1
2 
B0 (geµB + gIµN ) − 

1
4 
bF + 

4B0 (g µ
b
B

F
2 

+ gIµN )e 

1 1+ bF2 
B0 (geµB − gIµN ) − 

4 

Splitting = ∆ ν = (E1 − E3 ) − (E2 − E4 ) = 
2
1 bF − ⎝⎜

⎛ − 
2
1 bF ⎠⎟

⎞ = bF = 1422.9 MHz . 

ν = 1422.9 MHz = 1.4229 GHz = 1.4229·109 s−1 

λ = [1.4229·109 s−1 2.9979·1010 cm s−1 ]−1 
= 21.07 cm. 

At zero field, one observes a single line, F = 0 → F = 1. In the presence of a modest B field, the line
will split and the doublet will shift to the blue (doublet will be seen in a range of a few to a few tens of
GHz). The observed splitting of the doublet will change depending upon whether the interstellar cloud
is moving towards or away from us, and this is due to the Doppler shift. 
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