

© Academic Press, Inc. Bransford, J.D., & Johnson, M.K. "Contextual prerequisites for understanding: Some investigations of comprehension and recall." Journal of Verbal Learning and Verbal Behavior, 11 (1972): 717-726. http://www.cogsci.umn.edu/docs/pdfs/Bransford1972-JVLVB.pdf All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Intended Learning Outcomes

By the end of today's class, you will be able to:

- Describe the components of constructive alignment & backward design.
- Classify the content of a course you may teach
- Create measurable, specific, and realistic learning outcomes
- State the components of a syllabus

Think - Write (Activity #1)

Using the list of topics from your pre-session assignment & the Developing ILOs Worksheet:

- 1. Consider what students should be able to do with each topic (a la Bloom's).
- 2. Assign each topic to a cell in 2nd column of the worksheet

Learning Outcomes

Should be statements describing student behaviors/characteristics that are:

- specific
- measurable
- realistic

Skille	What students should be able
31113	to do by the time the course is completed.
Knowledge	What students should know and understand by the time the course is completed.
Attitudes/ Attributes	For example, how confident students are that they can perform identified skills.

© Regents of the University of Minnesota. All rights reserved. This content is excluded from our Creative Commons license. For more information, see <u>https://ocw.mit.edu/help/faq-fair-use/</u>.

Your learning outcomes should address a range of cognitive processes

Revised Bloom's Taxonomy diagram removed due to copyright restrictions. See: From: Bloom, B. S. (ed.). *Taxonomy of Educational Objectives*. Vol. 1: Cognitive Domain. New York: McKay, 1956 ; and Anderson, L.W. (Ed.), Krathwohl, D.R. (Ed.), et al. *A taxonomy for learning, teaching, and assessing: A revision of Bloom's Taxonomy of Educational Objectives* (Complete edition). New York: Longman. 2001.

Bloom's Taxonomy – of Learning Outcomes

Image removed due to copyright restrictions. Please see: Bloom's Revised Taxonomy: The interlocking of cognitive processes, copyright 2012. Kathy Schrock. All rights reserved. <u>http://www.schrockguide.net/</u> <u>uploads/3/9/2/2/392267/8178269_orig.jpg?490</u>

Same topic -Different cognitive processes

Topic: Interstitial sites

- Identify interstitial sites in various crystal structures
- Calculate the maximum size of interstitial ions in a variety of crystal structures

Topic: X-Ray diffraction

- Apply Bragg's law to calculate d-spacings
- Index unknown diffraction patterns

Topic: VSEPR Theory

Levels of ILOs using Bloom's taxonomy

- List (identify) the common geometric shapes found in simple molecules.
- Explain the assumptions of VSEPR theory.
- Apply VSEPR theory to predict 3D molecular structures from 2D Lewis structures.
- Compare and contrast (analyze) the geometry of XYZ molecule as predicted by VSEPR theory and molecular orbital theory.
- Evaluate the accuracy of each theory in predicting the geometry of transition metal compounds.
- Create a list of recommendations of when to use each theory taking into account the trade-off of effort and accuracy.

Learning outcomes should be specific, measurable & realistic

In pairs, rewrite one of these ILOs to make it more: specific, measurable, realistic, student focused.

- 1. Understand how to use t-tests in data analysis
- 2. Gain an appreciation for the use of linearization techniques
- 3. Have an intuition for the most effective method of integration for a given problem
- 4. Provide problem solving tools & strategies
- 5. Use thermodynamics to solve engineering problems
- 6. Build an SAE race-car
- 7. Learn to use Laplace transforms to solve differential equations
- 8. Know how to upper-diagonalize a matrix

Think - Pair - Share (Activity #2)

Using the Developing ILOs Worksheet:

- 1. Draft ILOs based on your categorizations;
- 2. Trade worksheets with a partner, read, discuss & give feedback;
- 3. Write 2 ILOs on flip-chart paper, display;
- 4. View the postings of your peers;
- 5. We will debrief in the large group.

What's the purpose of a syllabus?

- 1. Sets tone
- 2. Motivates students
- 3. Planning tool for faculty
- 4. Structures student work
- 5. Helps faculty meet course goals
- 6. Contract between faculty and students
- 7. Portfolio artifact

MOTIVATIONAL - STRUCTURAL - EVIDENTIARY

What's *in* a syllabus?

- Basic course information: managerial stuff
- Course Description: including the key concepts and course philosophy
- Intended Learning Outcomes (ILOs)
- Teaching and Learning Activities
- Student Assessments (how you will measure what/if students have achieved the ILOs)
- Lecture schedule/course calendar
- Course policies / Syllabus statements (will post)

These are the core of the explicit contract

MIT OpenCourseWare https://ocw.mit.edu

5.95J / 6.982J / 7.59J / 8.395J / 18.094J / 1.95J / 2.978J Teaching College-Level Science and Engineering Fall 2015

For information about citing these materials or our Terms of Use, visit: <u>https://ocw.mit.edu/terms</u>.