Neuronal activity is low during

Figure 9: Continuous skin conductance measurements, removed due to copyright restrictions. Please see: Poh, M., et al. "A Wearable Sensor for Unobtrusive, Long-Term Assessment of Electrodermal Activity." *IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING* 57, No. 5 (2010): 1243 - 1252.

Planning a Class or Unit of Instruction

- articulate factors that promote effective lectures
- consider ways you can gain students' attention, help them to integrate new material & support their comprehension
- make informed decisions about lecture organization & content to support your ILOs
- create an outline for a unit of instruction

WHAT ARE LECTURES GOOD FOR?

WHY DO WE LECTURE?

WHAT'S THE PROBLEM WITH TRADITIONAL LECTURES?

Consider...

Top 5 Factors that Influence Student Learning*

What do *you* think are factors that support student learning?

2. Task Orientation

Clarity

1.

- 3. Student Opportunity
- 4. Variety
- 5. Teacher Enthusiasm

© Prentice Hall, Inc., and Flowers, J. "Factors that Influence Learning," 2006. All rightsreserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

*(Rosenshine, B., & Furst, N. (1973). Chapter 3: Research on teacher performance criteria. In B. Othanel Smith (Ed.), Research in teacher education - A symposium (pp. 37-72). Englewood Cliffs, NJ: Prentice-Hall, Inc.)

3 Key Elements of Effective Lectures

1. They grab the learner's attention

2. They help the learner **integrate** new information into existing frameworks

3. They help build learner comprehension

© Prentice Hall, Inc., and Flowers, J. "Factors that Influence Learning," 2006. All rightsreserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

*(Rosenshine, B., & Furst, N. (1973). Chapter 3: Research on teacher performance criteria. In B. Othanel Smith (Ed.), Research in teacher education - A symposium (pp. 37-72). Englewood Cliffs, NJ: Prentice-Hall, Inc.)

Attention, integration & comprehension

ATTENTION

- 1. Clarity
- 2. Enthusiasm

INTEGRATION

- 3. Task Orientation
- 4. Student Opportunity
- 5. Variety

COMPREHENSION

Active learning In class and

Assignments & problems to help students construct meaning

Use your structure to create discrete segments-

- Divide it both in terms of time and in terms of material.
- Create 10-15 minute chunks of material.
- Summarize the previous lecture; introduce the topic(s) for the day; present the material; summarize briefly; preview any homework and the next lecture.

Build in interaction -

- Prepare questions— to motivate, solidify understanding, identify misconceptions, etc.
- Set up hypotheticals, problem-solving exercises, brainstorming.
- Work to get everyone involved, even in large classes.

Plan for less time than the class period -

- You will NOT start on time
- You will take some time to get up to speed
- Students will/should have questions

Plan what your board will look like

- Anticipate space requirements
- Facilitate effective note-taking
- Note likely misconceptions/ problem areas.

 CLARITY, 3. TASK ORIENTATION,
STUDENT OPPORTUNITY

•

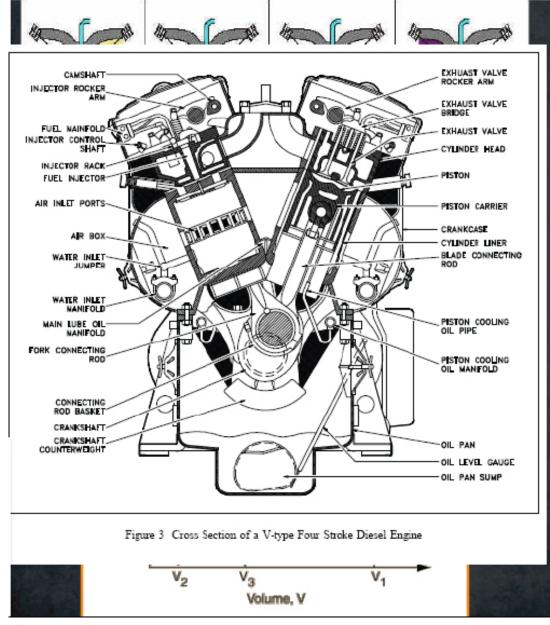
•

Logistics and Delivery

Enhance Credibility -

- Be comfortable and confident presenting material.
- Be enthusiastic.
- Incorporate your research and own ideas.

The cycle of problem-centered learning


Phases for Effective Instruction diagram removed due to copyright restrictions. See: Figure 1, p. 45 in Merrill, M. D. First principles of instruction. Educational Technology Research and Development, 50, no. 3 (2002): 43-59.

From, First Principles of Instruction, M.D. Merrill

Structural

Discuss the thermodynamic and physical processes that occur in each stage of the diesel cycle.

© Integrated Publishing, Inc. Mechanical Science Handbook, Volume 1. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Problem-Solution

Problem: Manufacturer's hammers are breaking

Solution:

The class period is spent discussing the concepts & analytical techniques needed to make a recommendation

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Chaining

Prepare a white cake with mousse filling and buttercream frosting.

© source unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Attention, integration & comprehension - this class...

ATTENTION

????

INTEGRATION	
????	

COMPREHENSION
????

IN SMALL GROUPS

For your assigned topic:

- Create an intended learning outcome(s) ILO.
- Use the template to outline/describe:
 - How will you address: attention, integrate & comprehension?
 - Necessary questions, supplies/props, etc.
 - The general flow of the class

LARGE GROUP SHARE-OUT

• Each group will present their template to the class

MIT OpenCourseWare https://ocw.mit.edu

5.95J Teaching College-Level Science and Engineering Fall 2015

For Information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.