
MIT OpenCourseWare
http://ocw.mit.edu

6.00 Introduction to Computer Science and Programming
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

EECS Reminders

Final exam
I will send out a list of what I think we covered this term
2 hours (not 3)
Comprehensive, but weighted towards end
Reviews scheduled

Underground Guide
Today’s lecture

What do computer scientists do?
What does this computer scientist do

Overview of term

December 9, 2008 ©John Guttag Slide 0

What Do
Computer Scientists Do?

December 9, 2008 ©John Guttag Slide 1

EECS What Do Computer Scientists Do?

They think computationally

Computational thinking will be a fundamental skill used by
everyone in the world by the middle of the 21st Century.

Just like the three r’s: reading, riting, and rithmetic.
Ubiquitous computing and computers will enable the

spread of computational thinking.

December 9, 2008 ©John Guttag Slide 4

EECS Computational Thinking: the Process

Identify or invent useful abstractions
Formulate solution to a problem as a computational

experiment
Design and construct a sufficiently efficient implementation

of experiment
Validate experimental setup
Run experiment
Evaluate results of experiment
Repeat as needed

December 9, 2008 ©John Guttag Slide 5

EECS The Two A’s of Computational Thinking1

Abstraction
Choosing the right abstractions
Operating in terms of multiple layers of abstraction

simultaneously
Defining the relationships the between layers

Automation
Think in terms of mechanizing our abstractions
Mechanization is possible

Because we have precise and exacting notations and
models

There is some “machine” below (human or computer,
virtual or physical)

1Ideas adapted from
Jeannette Wing

December 9, 2008 ©John Guttag Slide 6

EECS Examples of Computational Thinking

How difficult is this problem and how best can I solve it?
Theoretical computer science gives precise meaning to

these and related questions and their answers
Thinking recursively

Reformulating a seemingly difficult problem into one
which we know how to solve.

Reduction, embedding, transformation, simulation

December 9, 2008 ©John Guttag Slide 7

EECS Examples of Computational Thinking

Choosing an appropriate representation or modeling the
relevant aspects of a problem to make it tractable

Prevention, detection, and recovery from worst-case
scenarios through redundancy, damage containment,
and error correction

Using the difficulty of solving hard problems to foil would
be evil doers

December 9, 2008 ©John Guttag Slide 8

EECS What One Group Does, My Research Group

Goals
Help people live longer and better quality lives

In collaboration with clinicians
Have fun pushing the frontiers of

Computer Science
Electrical Engineering
Medicine

Technical areas
Machine learning, clustering, data mining
Algorithm design
Signal processing
Software systems

December 9, 2008 ©John Guttag Slide 9

EECS Specific Research Activities

Extracting clinically useful information from electrical
signals
Heart, brain, and connected anatomy
Signal processing, algorithms, clustering, machine

learning, …
Predicting adverse cardiac events

Zeeshan Syed, Phil Sung, Jenna Wiens, Eugene Shih
Collin Stultz, Ben Scirica

Detecting and responding to epileptic seizures
Ali Shoeb, Al Kharbouch, Naveen Verma
Steve Schachter, Trudy Pang, Syd Cash

December 9, 2008 ©John Guttag Slide 10

EECS Technical Skills Utilized

Machine learning, clustering, data mining
Exploiting patient specificity
Deriving new medical knowledge from large data sets

Algorithm design
Computing novel functions
Making things fast enough to actually use

Signal processing
Extracting physiological relevant features from noisy signals

Software systems
Reliability and predictability matters a lot

We have used a closed loop neuro-stimulator on humans

December 9, 2008 ©John Guttag Slide 11

EECS Example 1. Treating Epilepsy

Prevalence of ~1%; all ages
All countries

Characterized by recurrent seizures
Generated by abnormal electrical
activity in brain

Seizures occur unpredictably
Often lead to injury and
prolonged impairment

Multiplicity of manifestations

Acquired

Head Injury
Intracranial Hemorrhage

 Infection

Stroke

Inherited
Ion Channelopathy

Defective Neural Organization

December 9, 2008 ©John Guttag Slide 12

EECS Seizure Onset Seems Unpredictable

May result in injury
Fractures, intracranial hematomas, burns, etc.

May result in death
Mortality rate 2-3 times that of general population
Accidents, aspiration, drowning, etc.
SUDEP (annual risk estimated to be 1 per 100 for patients

with symptomatic seizures)

December 9, 2008 ©John Guttag Slide 13

EECS Early Detection of Seizure Onset

Two onset times
Electrographic
Clinical

Detecting electrographic onset
Use scalp EEG

Therapeutic value
Provide warning
Summon help
Fast acting drugs
Neural stimulation

December 9, 2008 ©John Guttag Slide 14

EECS Not Easy

December 9, 2008 ©John Guttag Slide 15

EEG varies greatly across patients
Epileptics have abnormal baselines
Generic detectors have not worked particularly well

Pretty consistent patterns for an individual
Use patient-specific detectors

Use machine learning to build patient-specific seizure onset
detector. Highly successful retrospective studies

Turn on neural stimulator at start of seizure. Study in
progress at BIDMC

EECS Example 2: Predicting Death

Joint work with Collin Stultz and Zeeshan Syed
Acute coronary syndrome (ACS) common: ~1.25M/year in U.S.

15% - 20% of these people will suffer cardiac-related death
within 4 years

Stratifying risk key to choosing treatments
Who gets a defibrillator?
Who should be treated aggressively with statins

We think that we have a new and better way of doing this
Morphological variability (MV)
Tested on ~8000*2*24*60*70 heart beats

December 9, 2008 ©John Guttag Slide 16

EECS

Useful to find patients who should be:
Monitored more closely
Treated more aggressively

E.g., implanted defibrillators

Too many: Potentially risky, always expensive (~$50k)
90% of recipients received < 0 medical benefit

Too few: 100’s of deaths/day potentially avoidable

Identifying High Risk Cases Vitally Important

December 9, 2008 ©John Guttag Slide 17

EECS

Clinical characteristics
E.g., gender or high blood pressure

Biomarkers
E.g., cholesterol levels

Echocardiography
Ultrasound to measure, e.g., left ejection fraction

Electrocardiography (ECG)
Established methods, e.g., HRV and DC
New method: Morphologic Variability (MV)

Measures variability in shape of heart beats

Approaches to Identifying High Risk Cases

December 9, 2008 ©John Guttag Slide 18

EECS Calculating Morphologic Distance

Use a variant of Dynamic Time-Warping (DTW)
Similar to Smith-Waterman algorithm to align amino acid

sequences
Construct distance matrix
Find minimum cost path through it using dynamic

programming

Euclidean Distance “Warped” Time Axis
Sequences are aligned “one to one”. Nonlinear alignments are possible.

December 9, 2008 ©John Guttag Slide 19

EECS

764 patients admitted to hospital with non-ST-elevation ACS
MI or unstable angina
But less immediately dangerous than with ST-elevation

Holter ECG recorded at 128 Hz for 2-4 days within 48 hours of
event
~160M heart beats

Examined only one channel
90 day follow-up for cardiovascular death

One Evaluation

December 9, 2008 ©John Guttag Slide 20

EECS Mortality Curves Using Quartile

December 9, 2008 ©John Guttag Slide 21

EECS Wrapping Up the Term

December 9, 2008 ©John Guttag Slide 22

EECS Five Major Topics

Learning a language for expressing computations – Python
Learning about the process of writing and debugging a

program
Learning about the process of moving from an ambiguous

problem statement to a computational formulation of a
method for solving the problem

Learning a basic set of recipes – algorithms
Learning how to use simulations to shed light on problems

that don’t easily succumb to closed form solutions

December 9, 2008 ©John Guttag Slide 23

EECS Why Python?

Relatively easy to learn and use
Simple syntax
Interpretive, which makes debugging easier
Don’t have to worry about managing memory

Modern
Supports currently stylish mode of programming, object-

oriented
Increasingly popular

Used in an increasing number of subjects at MIT and
elsewhere

Increasing use in industry
Large and ever growing set of libraries

December 9, 2008 ©John Guttag Slide 24

EECS Writing, Testing, and Debugging Programs

Take it a step at time
Understand problem
Think about overall structure and algorithms independently

of expression in programming language
Break into small parts
Identify useful abstractions (data and functional)
Code and unit test a part at a time
First functionality, then efficiency
Start with pseudo code

Be systematic
When debugging, think scientific method
Ask yourself why program did what it did, not why it

didn’t do what you wanted it to do.

December 9, 2008 ©John Guttag Slide 25

EECS From Problem Statement to Computation

Break the problem into a series of smaller problems
Try and relate problem to a problem you or somebody else

have already solved
E.g., can it be viewed as a knapsack problem

Think about what kind of output you might like to see, e.g.,
what plots

Formulate as an optimization problem
Find the min (or max) values satisfying some set of

constraints
Think about how to approximate solutions

Solve a simpler problem
Find a series of solutions that approaches (but may never

reach) a perfect answer

December 9, 2008 ©John Guttag Slide 26

EECS Algorithms

Big O notation
Orders of growth

 Exponential, Polynomial, Linear, Log
Amortized analysis

Kinds of Algorithms
Exhaustive enumeration, Guess and check, Successive

approximation, Greedy algorithms, Divide and conquer,
Decision Trees, Dynamic programming

Specific algorithms
E.g., Binary search, Merge sort

Optimization problems
Knapsack problems

December 9, 2008 ©John Guttag Slide 27

EECS Simulation

An excuse (and framework) to learn a bit about probability
and statistics

An excuse to build interesting programs
The power of random choice

Much of the world is or appears to be stochastic
Can be used to solve problems that are not inherently

random
Assessing the quality of an answer

Not always obvious
Building models of parts of the world

December 9, 2008 ©John Guttag Slide 28

EECS Pervasive Themes

Power of abstraction
Systematic problem solving

December 9, 2008 ©John Guttag Slide 29

EECS What Next

Many of you have worked very hard
Only you know your return on investment

Take a look at early problem sets
Think about what you’d be willing tackle now

Remember that you can write programs to get answers
There are other CS courses you could take

6.01, 6.034, 6.005, 6.006

December 9, 2008 ©John Guttag Slide 30

