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PROFESSOR JOHN GUTTAG: All right. That said, let's continue, and if you remember 
last time, we ended up looking at this thing I called square roots bi. This was using 
something called a bisection method, which is related to something called binary 
search, which we'll see lots more of later, to find square roots. 

And the basic idea was that we had some sort of a line, and we knew the answer was 
somewhere between this point and this point. The line is totally ordered. And what 
that means, is that anything here is smaller than anything to its right. So the 
integers are totally ordered, the reals are totally ordered, lots of things are, the 
rationals are totally ordered. 

And that idea was, we make a guess in the middle, we test it so this is kind of a 
guess and check, and if the answer was too big, then we knew that we should be 
looking over here. If it was too small, we knew we should be looking over here, and 
then we would repeat. So this is very similar, this is a kind of recursive thinking we 
talked about earlier, where we take our problem and we make it smaller, we solve a 
smaller problem, et cetera. 

All right. So now, we've got it, I've got the code up for you. I want you to notice the 
specifications to start. We're assuming that x is greater than or equal to 0, and 
epsilon is strictly greater than 0, and we're going to return some value y such that y 
squared is within epsilon of x. 

I'd last time talked about the two assert statements. In some sense, strictly speaking 
they shouldn't be necessary, because the fact that my specification starts with an 
assumption, says, hey you, who might call square root, make sure that the things 
you call me with obey the assumption. 

On the other hand, as I said, never trust a programmer to do the right thing, so 
we're going to check it. And just in case the assumptions are not true, we're just 
going to stop dead in our tracks. 

All right. Then we're going to set low to-- low and high, and we're going to perform 
exactly the process I talked about. And along the way, I'm keeping track of how 
many iterations, at the end I'll print how many iterations I took, before I return the 
final guess. 

All right, let's test it. So one of the things I want you to observe here, is that instead 
of sitting there and typing away a bunch of test cases, I took the trouble to write a 
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function, called test bi in this case. All right, so what that's doing, is it's taking the 
things I would normally type, and putting them in a function, which I can then call. 

Why is that better than typing them? Why was it worth creating a function to do 
this? Pardon? 

STUDENT:: [INAUDIBLE] 

PROFESSOR JOHN GUTTAG: Then I can I can use it again and again and again. 
Exactly. 

By putting it in a function, if I find a bug and I change my program, I can just run 
the function again. The beauty of this is, it keeps me from getting lazy, and not only 
testing my program and the thing that found the bug, but in all the things that used 
to work. 

We'll talk more about this later, but it often happens that when you change your 
program to solve one problem, you break it, and things that used to work don't 
work. And so what you want to do, and again we'll come back to this later in the 
term, is something called regression testing. This has nothing to do with linear 
regression. And that's basically trying to make sure our program has not regressed, 
as to say, gone backwards in how well it works. And so we always test it on 
everything. 

All right? So I've created this function, let's give it a shot and see what happens. 
We'll run test bi. Whoops! 

All right, well let's look at our answers. I first tested it on the square root of 4, and 
in one iteration it found  2. I like that answer. I then tested it on the square root of  
9, and as I mentioned last time, I didn't find 3. I was not crushed. You know, I was 
not really disappointed, it found something close enough to 3 that I'm happy. 

All right. I tried it on 2, I surely didn't expect a precise and exact answer to that, 
but I got something, and if you square this, you'll find the answer kept pretty darn 
close to 2. 

I then tried it on 0.25 One quarter. And what happened was not what I wanted. As 
you'll see, it crashed. 

It didn't really crash, it found an assert statement. So if you look at the bottom of 
the function, you'll see that, in fact, I checked for that. I assert the counter is less 
than or equal to 0. I'm checking that I didn't leave my program because I didn't find 
an answer. Well, this is a good thing, it's better than my program running forever, 
but it's a bad thing because I don't have it the square root of 0.25. 

What went wrong here? Well, let's think about it for a second. You look like--
someone looks like they're dying to give an answer. No, you just scratching your 
head? All right. 

Remember, I said when we do a bisection method, we're assuming the answer lies 
somewhere between the lower bound and the upper bound. Well, what is the square 
root of a quarter? It is a half. 



Well, what-- where did I tell my program to look for an answer? Between and x. So 
the problem was, the answer was over here somewhere, and so I'm never going to 
find it cleverly searching in this region, right? So the basic idea was fine, but I failed 
to satisfy the initial condition that the answer had to be between the lower bound 
and the upper bound. Right? 

And why did I do that? Because I forgot what happens when you look at fractions. So 
what should I do? Actually I lied, by the way, when I said the answer was over there. 
Where was the answer? Somebody? 

It was over here. Because the square root of a quarter is not smaller than a quarter, 
it's bigger than a quarter. Right? A half is strictly greater than a quarter. 

So it wasn't on the region. So how-- what's the fix? Should be a pretty simple fix, in 
fact we should be able to do it on the fly, here. What should I change? Do I need to 
change the lower bound? Is the square root ever going to be less than 0? Doesn't 
need to be, so, what should I do about the upper bound here? Oh, I could cheat and 
make, OK, the upper bound a half, but that wouldn't be very honest. 

What would be a good thing to do here? Pardon? I could square x, but maybe I 
should just do something pretty simple here. Suppose-- whoops. Suppose I make it 
the max of x and 1. Then if I'm looking for the square root of something less than 1, 
I know it will be in my region, right? 

All right, let's save this, and run it and see what happens. Sure enough, it worked 
and, did we get-- we got the right answer, 0.5 All right? And by the way, I checked 
all of my previous ones, and they work too. 

All right. Any questions about bisection search? 

One of the things I want you to notice here is the number iterations is certainly not 
constant. Yeah, when I will looked at 4, it was a nice number like 1, 9 looked like it 
took me 18, 2 took me 14, if we try some big numbers it might take even longer. 
These numbers are small, but sometimes when we look at really harder problems, 
we got ourselves in a position where we do care about the number of iterations, and 
we care about something called the speed of convergence. 

Bisection methods were known to the ancient Greeks, and it is believed by many, 
even to the Babylonians. And as I mentioned last time, this was the state of the art 
until the 17th century. At which point, things got better. So, let's think about it, and 
let's think about what we're actually doing when we solve this. 

When we look for something like the square root of x, what we're really doing, is 
solving an equation. We're looking at the equation f of guess equals the guess 
squared minus x. Right, that's what that is equal to, and we're trying to solve the 
equation that f of guess equals 0. Looking for the root of this equation. 

So if we looked at it pictorially, what we've got here is, we're looking at f of x, I've 
plotted it here, and we're asking where it crosses the x axis. Sorry for the 
overloading of the word x. 



And I'm looking here at 16. Square root of 16, and my plot basically shows it crosses 
at 4 and-- well, I think that's minus 4. The perspective is tricky-- and so we're 
trying to find the roots. 

Now Isaac Newton and/or Joseph Raphson figured out how to do this kind of thing 
for all differentiable functions. Don't worry about what that means. 

The basic idea is, you take a guess, and you -- whoops -- and you find the tangent of 
that guess. 

So let's say I guessed 3. I look for the tangent of the curve at 3. All right, so I've 
got the tangent, and then my next guess is going to be where the tangent crosses 
the x axis. So instead of dividing it in half, I'm using a different method to find the 
next guess. 

The utility of this relies upon the observation that, most of the time-- and I want to 
emphasize this, most of the time, that implies not all of the time-- the tangent line is 
a good approximation to the curve for values near the solution. And therefore, the x 
intercept of the tangent will be closer to the right answer than the current guess. 

Is that always true, by the way? Show me a place where that's not true, where the 
tangent line will be really bad. Yeah. Suppose I choose it right down there, I guess 0. 
Well, the tangent there will not even have an x intercept. So I'm really going to be 
dead in the water. 

This is the sort of thing that people who do numerical programming worry about all 
the time. And there are a lot of a little tricks they use to deal with that, they'll 
perturb it a little bit, things like that. You should not, at this point, be worrying about 
those things. 

This method, interestingly enough, is actually the method used in most hand 
calculators. So if you've got a calculator that has a square root button, it's actually in 
the calculator running Newton's method. Now I know you thought it was going to do 
that thing you learned in high school for finding square roots, which I never could 
quite understand, but no. It uses Newton's method to do it. 

So how do we find the intercept of the tangent, the x intercept? Well this is where 
derivatives come in. What we know is that the slope of the tangent is given by the 
first derivative of the function f at the point of the guess. So the slope of the guess is 
the first derivative. Right. Which dy over dx. Change in y divided by change in x. 

So we can use some algebra, which I won't go through here, and what we would find 
is that for square root, the derivative, written f prime of the i'th guess is equal to two 
times the i'th guess. Well, should have left myself a little more room, sorry about 
that. 

All right? You could work this out. Right? The derivative of the square root is not a 
complicated thing. Therefore, and here's the key thing we need to keep in mind, we'll 
know that we can choose guess i plus 1 to be equal to the old guess, guess i, minus 
whatever the value is of the new guess-- of the old rather, the old guess-- divided by 
twice the old guess. 



All right, again this is straightforward kind of algebraic manipulations to get here. So 
let's look at an example. 

Suppose we start looking for the square root of 16 with the guess 3. What's the 
value of the function f of 3? Well, it's going to be, we looked at our function there, 
guess squared, 3 times 3 is 9 I think, minus 16, that's what x is in this case, which 
equals minus 7. 

That being the case, what's my next guess? Well I start with my old guess, 3, minus 
f of my old guess, which is minus 7, divided by twice my old guess, which is 6, minus 
the minus, and I get as my new guess 4.1666 or thereabouts. So you can see I've 
missed, but I am closer. And then I would reiterate this process using that as guess 
i, and do it again. 

One way to think about this intuitively, if the derivative is very large, the function is 
changing quickly, and therefore we want to take small steps. All right. If the 
derivative is small, it's not changing, maybe want to take a larger step, but let's not 
worry about that, all right? 

Does this method work all the time? Well, we already saw no, if my initial guess is 
zero, I don't get anywhere. In fact, my program crashes because I end up trying to 
divide by zero, a really bad thing. Hint: if you implement Newton's method, do not 
make your first guess zero. 

All right, so let's look at the code for that. All right so-- yeah, how do I get to the 
code for that? That's interesting. 

All right. So we have that square root NR. NR for Newton Raphson. First thing I want 
you to observe is its specification is identical to the specification of square root bi. 
What that's telling me is that if you're a user of this, you don't care how it's 
implemented, you care what it does. And therefore, it's fine that the specifications 
are identical, in fact it's a good thing, so that means if someday Professor Grimson 
invents something that's better than Newton Raphson, we can all re-implement our 
square root functions and none of the programs that use it will have to change, as 
long as the specification is the same. 

All right, so, not much to see about this. As I said, the specifications is the same, 
same assertions, and the-- it's basically the same program as the one we were just 
looking at, but I'm starting with a different guess, in this case x over  2, well I'm 
going to, couple of different guesses we can start with, we can experiment with 
different guesses and see whether we get the same answer, and in fact, if we did, we 
would see we didn't get this, we got different answers, but correct answers. Actually 
now, we'll just comment that out. I'm going to compute the difference, just as I did 
on the board, and off we'll go. 

All right. Now, let's try and compare these things. And what we're going to look at is 
another procedure, you have the code for these things on your handout so we won't 
worry, don't need to show you the code, but let's look at how we're going to test it. 

I'm doing a little trick by the way, I'm using raw input in my function here, as a just 
a way to stop the display. This way I can torture you between tests by asking you 
questions. Making it stop. 



All right, so, we'll try some things. We'll see what it does. Starting with that, well, 
let's look at some of the things it will do. Yeah, I'll save it.. It's a little bit annoying, 
but it makes the font bigger. 

All right, so we've tested it, and we haven't tested it yet, we have tested it but, we 
haven't seen it, well, you know what I'm going to do? I'm going to tort-- I'm going to 
make the font smaller so we can see more. Sorry about this. Those of you in the 
back, feel free to move forward. 

All right. So we've got it, now let's test it. So we're going to do here, we're going to 
run compare methods. Well we're seeing this famous computers are no damn good. 

All right. So we're going to try it on 2, and at least we'll notice for 2, that the 
bisection method took eight iterations, the Newton Raphson only took three, so it 
was more efficient. They came up with slightly different answers, but both answers 
are within .01 which is what I gave it here for epsilon, so we're OK. So even though 
they have different answers, they both satisfy the same specification, so we have no 
problem. All right? 

Try it again, just for fun. I gave it here a different epsilon, and you'll note, we get 
different answers. Again, that's OK. Notice here, when I asked for a more precise 
answer, bisection took a lot more iterations, but Newton Raphson took only one 
extra iteration to get that extra precision in the answer. So we're sort of getting the 
notion that Newton Raphson maybe is considerably better on harder problems. 
Which, by the way, it is. 

We'll make it an even harder problem, by making it looking an even smaller epsilon, 
and again, what you'll see is, Newton Raphson just crept up by one, didn't take it 
long, and got the better answer, where bisection gets worse and worse. So as you 
can see, as we escalate the problem difficulty, the difference between the good 
method and the not quite as good method gets bigger and bigger and bigger. That's 
an important observation, and as we get to the part of the course, we talk about 
computational complexity, you'll see that what we really care about is not how 
efficient the program is on easy problems, but how efficient it is on hard problems. 

All right. Look at another example. All right, here I gave it a big number, 
123456789. And again, I don't want to bore you, but you can see what's going on 
here with this trend. 

So here's an interesting question. You may notice that it's always printing out the 
same number of digits. Why should this be? If you look at it here, what's going on? 
Something very peculiar is happening here. We're looking at it, and we're getting 
some funny answers. 

This gets back to what I talked about before, about some of the precision of floating 
point numbers. And the thing I'm trying to drive home to you here is perhaps the 
most important lesson we'll talk about all semester. Which is, answers can be wrong. 

People tend to think, because the computer says it's so, it must be so. That the 
computer is-- speaks for God. And therefore it's infallible. Maybe it speaks for the 
Pope. It speaks for something that's infallible. But in fact, it is not. And so, 
something I find myself repeating over and over again to myself, to my graduate 



students, is, when you get an answer from the computer, always ask yourself, why 
do I believe it? Do I think it's the right answer? Because it isn't necessarily. 

So if we look at what we've got here, we've got something rather peculiar, right? 
What's peculiar about what this computer is now printing for us? Why should I be 
really suspicious about what I see in the screen here? 

STUDENT: [INAUDIBLE] 

PROFESSOR JOHN GUTTAG: Well, not only is it different, it's really different, right? If 
it were just a little bit different, I could say, all right, I have a different 
approximation. But when it's this different, something is wrong. Right? 

We'll, later in the term when we get to more detailed numerical things, look at 
what's wrong. You can run into issues of things like overflow, underflow, with floating 
point numbers, and when you see a whole bunches of ones, it's particularly a good 
time to be suspicious. Anyway the only point I'm making here is, paranoia is a 
healthy human trait. 

All right. We can look at some other things which will work better. And we'll now 
move on. OK. 

So we've looked at how to solve square root we've, looked at two problems, I've 
tried to instill in you this sense of paranoia which is so valuable, and now we're going 
to pull back and return to something much simpler than numbers, and that's Python. 
All right? Numbers are hard. That's why we teach whole semesters worth of courses 
in number theory. Python it's easy, which is why we do it in about four weeks. 

All right. I want to return to some non-scalar types. So we've been looking, the last 
couple of lectures, at floating point numbers and integers. We've looked so far really 
at two non-scalar types. And those were tuples written with parentheses, and 
strings. 

The key thing about both of them is that they were immutable. And I responded to 
at least one email about this issue, someone quite correctly said tuple are 
immutable, how can I change one? My answer is, you can't change one, but you can 
create a new one that is almost like the old one but different in a little bit. 

Well now we're going to talk about some mutable types. Things you can change. And 
we're going to start with one that you, many of you, have already bumped into, 
perhaps by accident, which are lists. Lists differ from strings in two ways; one way is 
that it's mutable, the other way is that the values need not be characters. They can 
be numbers, they can be characters, they can be strings, they can even be other 
lists. 

So let's look at some examples here. What we'll do, is we'll work on two boards at 
once. So I could write a statement like, techs, a variable, is equal to the list, written 
with the square brace, not a parenthesis, MIT, Cal Tech, closed brace. What that 
basically does, is it takes the variable techs, and it now makes it point to a list with 
two items in it. One is the string MIT and one is the string Cal Tech. 

So let's look at it. And we'll now run another little test program, show lists, and I 
printed it, and it prints the list MIT, Cal Tech. Now suppose I introduce a new 



variable, we'll call it ivys, and we say that is equal to the list Harvard, Yale, Brown. 
Three of the ivy league colleges. What that does is, I have a new variable, ivys, and 
it's now pointing to another, what we call object, in Python and Java, and many 
other languages, think of these things that are sitting there in memory somewhere 
as objects. And I won't write it all out, I'll just write it's got Harvard as one in it, and 
then it's got Yale, and then it's got Brown. And I can now print ivys. And it sure 
enough prints what we expected it to print. 

Now, let's say I have univs, for universities, equals the empty list. That would create 
something over here called univs, another variable, and it will point to the list, an 
object that contains nothing in it. 

This is not the same as none. It's it does have a value, it just happens to be the list 
that has nothing in it. 

And the next thing I'm going to write is univs dot append tex. What is this going to 
do? It's going to take this list and add to it something else. 

Let's look at the code. I'm going to print it, and let's see what it prints. It's kind of 
interesting. Whoops. Why did it do that? That's not what I expected. It's going to 
print that. The reason it printed that is I accidentally had my finger on the control 
key, which said print the last thing you had. 

Why does it start with square braced square brace? I take it-- yes, go ahead. 

STUDENT: So you're adding a list to a list? 

PROFESSOR JOHN GUTTAG: So I'm adding a list to a list. What have I-- what I've 
appended to the empty list is not the elements MIT and Cal Tech but the list that 
contains those elements. 

So I've appended this whole object. Since that object is itself a list, what I get is a 
list of lists. 

Now I should mention this notation here append is what is in Python called a 
method. Now we'll hear lots more about methods when we get to classes and 
inheritance, but really, a method is just a fancy word for a function with different 
syntax. Think of this as a function that takes two arguments, the first of which is 
univs and the second of which is techs. And this is just a different syntax for writing 
that function call. 

Later in the term, we'll see why we have this syntax and why it wasn't just a totally 
arbitrary brain-dead decision by the designers of Python, and many languages before 
Python, but in fact is a pretty sensible thing. But for now, think of this as just 
another way to write a function call. All right, people with me so far? 

Now let's say we wanted as the next thing we'll do, is we're going to append the ivys 
to univ. Stick another list on it. All right. So we'll do that, and now we get MIT, Cal 
Tech, followed by that list followed by the list Harvard, Yale, Brown. So now we have 
a list containing two lists. 

What are we going to try next? Well just to see what we know what we're doing, let's 
look at this code here. I've written a little for loop, which is going to iterate over all 



of the elements in the list. So remember, before we wrote things like for i in range 
10, which iterated over a list or tuple of numbers, here you can iterate over any list, 
and so we're going to just going to take the list called univs and iterate over it. 

So the first thing we'll do is, we'll print the element, in this case it will be a list, right? 
Because it's a list with two lists in it. Then the next thing in the loop, we're going to 
enter a nested loop, and say for every college in the list e, we're going to print the 
name of the college. So now if we look what we get-- do you not want to try and 
execute that?-- it'll first print the list containing MIT and Cal Tech, and then 
separately the strings MIT and Cal Tech, and then the list containing Harvard, Yale, 
and Brown, and then the strings Harvard, Yale, and Brown. 

So we're beginning to see this is a pretty powerful notion, these lists, and that we 
can do a lot of interesting things with them. Suppose I don't want all of this 
structure, and I want to do what's called flattening the list. Well I can do that by, 
instead of using the method append, use the concatenation operator. So I can 
concatenate techs plus ivys and assign that result to univs, and then when I print it 
you'll notice I just get a list of five strings. 

So plus and append do very different things. Append sticks the list on the end of the 
list, append flattens it, one level of course. If I had lists of lists of lists, then it would 
only take out the first level of it. OK, very quiet here. Any questions about any of 
this? All right. Because we're about to get to the hard part Sigh. All right. 

Let's look at the-- well, suppose I want to, quite understandably, eliminate Harvard. 
All right, I then get down here, where I'm going to remove it. So this is again 
another method, this is remove, takes two arguments, the first is ivys, the second is 
the string Harvard. It's going to search through the list until the first time it finds 
Harvard and then it's going to yank it away. So what happened here? Did I jump to 
the wrong place? 

STUDENT: You hit two returns. 

PROFESSOR JOHN GUTTAG: I hit two returns. Pardon? 

STUDENT: You hit two returns. One was at 

STUDENT: Pardo 

PROFESSOR JOHN GUTTAG: This one. 

STUDENT: No, up one. 

PROFESSOR JOHN GUTTAG: Up one. 

STUDENT: Right. 

PROFESSOR JOHN GUTTAG: But why is Harvard there? 

STUDENT: I'm sorry, I didn't write it down. 



PROFESSOR JOHN GUTTAG: Let's look at it again. All right, it's time to interrupt the 
world, and we'll just type into the shell. Let's see what we get here. All right, so let's 
just see what we got, we'll print univs. Nope, not defined. 

All right, well let's do a list equals, and we'll put some interesting things in it, we'll 
put a number in it, because we can put a number, we'll put MIT in it, because we can 
put strings, we'll put another number in it, 3.3, because we can put floating points, 
we can put all sorts of things in this list. We can put a list in the list again, as we've 
seen before. So let's put the list containing the string a, and I'll print out, so now we 
see something pretty interesting about a list, that we can mix up all sorts of things in 
it, and that's OK. 

You'll notice I have the string with the number 1, a string with MIT, and then it just a 
plain old number, not a string, again it didn't quite give me 3.3 for reasons we've 
talked before, and now it in the list a. 

So, suppose I want to remove something. What should we try and remove from this 
list? Anybody want to vote? Pardon? All right, someone wants to remove MIT. Sad 
but true. Now what do we get if we print l? MIT is gone. 

How do I talk about the different pieces of l? Well I can do this. l sub 0-- whoops--
will give me the first element of the list, just as we could do with strings, and I can 
look at l sub minus 1 to get the last element of the list, so I can do all the strings, all 
the things that I could do with strings. 

It's extremely powerful, but what we haven't seen yet is mutation. Well, we have 
seen mutation, right? Because notice that what remove did, it was it actually 
changed the list. Didn't create a new list. The old l is still there, but it's different than 
it used to be. So this is very different from what we did with slicing, where we got a 
new copy of something. Here we took the old one and we just changed it. 

On Thursday, we'll look at why that allows you to do lots of things more conveniently 
than you can do without mutation. 


