
MIT OpenCourseWare
http://ocw.mit.edu

6.00 Introduction to Computer Science and Programming
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

6.00 Handout, Lecture 21
(Not intended to make sense outside of lecture)

def getSpringData(fname):
 springData = open(fname, 'r')
 distances = []
 forces = []
 for line in springData:
 if line[0] == '#': continue
 line = line[:-1]
 elems = line.rsplit(':')
 distances.append(float(elems[0]))
 forces.append(float(elems[1]))
 return pylab.array(distances), pylab.array(forces)

distances, forces = getSpringData('springData.txt')
pylab.scatter(distances, forces)
pylab.xlabel('Distance (Meters)')
pylab.ylabel('|Force| (Newtons)')
pylab.title('Force vs. Distance for Spring')

k, b = pylab.polyfit(distances, forces, 1)
yVals = k*distances + b
pylab.plot(distances, yVals, c = 'r', linewidth = 2)
pylab.title('Force vs. Distance, k = ' + str(k))

a, b, c = pylab.polyfit(times, speeds, 2)
yVals = a*(times**2) + b*times + c
pylab.plot(times, yVals, c = 'y', linewidth = 4)

R^2 = 1 – EE/DV, EE is errors in estimation and DV variance in data

EE computed by comparing estimates to measured data
DV computed by comparing mean of measured data to measure data

def rSquare(measured, estimated):
 diffs = (estimated - measured)**2
 mMean = measured.sum()/float(len(measured))
 var = (mMean - measured)**2
 return 1 - diffs.sum()/var.sum()

