UNDERSTANDING PROGRAM EFFICIENCY: 1

(download slides and .py files and follow along!)

6.0001 LECTURE 10

6.0001 LECTURE 10

Today

- Measuring orders of growth of algorithms
- Big "Oh" notation
- Complexity classes

WANT TO UNDERSTAND EFFICIENCY OF PROGRAMS

- computers are fast and getting faster so maybe efficient programs don't matter?
 - but data sets can be very large (e.g., in 2014, Google served 30,000,000,000 pages, covering 100,000,000 GB – how long to search brute force?)
 - thus, simple solutions may simply not scale with size in acceptable manner
- how can we decide which option for program is most efficient?
- separate time and space efficiency of a program
- tradeoff between them:
 - can sometimes pre-compute results are stored; then use "lookup" to retrieve (e.g., memoization for Fibonacci)
 - will focus on time efficiency

WANT TO UNDERSTAND EFFICIENCY OF PROGRAMS

Challenges in understanding efficiency of solution to a computational problem:

- a program can be implemented in many different ways
- you can solve a problem using only a handful of different algorithms
- would like to separate choices of implementation from choices of more abstract algorithm

HOW TO EVALUATE EFFICIENCY OF PROGRAMS

- measure with a timer
- count the operations

will argue that this is the most appropriate way of assessing the abstract notion of order of growth approved of choices of algorithm in . solving a problem; and in measuring

the inherent difficulty in solving a

problem

TIMING A PROGRAM

- use time module
- import time recall that importing means to bring in that class into your own file

```
def c_to_f(c):
    return c*9/5 + 32
```

- start clock ______t0 = time.clock()
- call function $\longrightarrow c_to_f(100000)$ \rightarrow t1 = time.clock() - t0 stop clock -Print("t =", t, ":", t1, "s,")

TIMING PROGRAMS IS INCONSISTENT

- GOAL: to evaluate different algorithms
- running time varies between algorithms
- running time varies between implementations
- running time varies between computers
- running time is not predictable based on small inputs
- time varies for different inputs but cannot really express a relationship between inputs and time

Х

Х

X

COUNTING OPERATIONS

- assume these steps take constant time:
 - mathematical operations
 - comparisons
 - assignments
 - accessing objects in memory toop x times
- then count the number of operations executed as function of size of input

mysum \rightarrow 1+3x ops

COUNTING OPERATIONS IS BETTER, BUT STILL...

- GOAL: to evaluate different algorithms
- count depends on algorithm
- count depends on implementations
- count independent of computers
- no clear definition of which operations to count X
- count varies for different inputs and can come up with a relationship between inputs and the count

STILL NEED A BETTER WAY

- timing and counting evaluate implementations
- timing evaluates machines
- want to evaluate algorithm
- want to evaluate scalability
- want to evaluate in terms of input size

STILL NEED A BETTER WAY

- Going to focus on idea of counting operations in an algorithm, but not worry about small variations in implementation (e.g., whether we take 3 or 4 primitive operations to execute the steps of a loop)
- Going to focus on how algorithm performs when size of problem gets arbitrarily large
- Want to relate time needed to complete a computation, measured this way, against the size of the input to the problem
- Need to decide what to measure, given that actual number of steps may depend on specifics of trial

NEED TO CHOOSE WHICH INPUT TO USE TO EVALUATE A FUNCTION

- want to express efficiency in terms of size of input, so need to decide what your input is
- could be an integer -- mysum(x)
- could be length of list
 - --list_sum(L)
- you decide when multiple parameters to a function -- search_for_elmt(L, e)

DIFFERENT INPUTS CHANGE HOW THE PROGRAM RUNS

- a function that searches for an element in a list def search_for_elmt(L, e): for i in L: if i == e: return True return False
- when e is **first element** in the list \rightarrow BEST CASE
- when e is not in list → WORST CASE
- when look through about half of the elements in list → AVERAGE CASE
- want to measure this behavior in a general way

BEST, AVERAGE, WORST CASES

- suppose you are given a list L of some length len (L)
- best case: minimum running time over all possible inputs of a given size, len(L)
 - constant for search for elmt
 - first element in any list
- average case: average running time over all possible inputs vill of a given size, len (L)
 practical measure focus on this case
 - practical measure

worst case: maximum running time over all possible inputs of a given size, len(L)

- linear in length of list for search for elmt
- must search entire list and not find it

ORDERS OF GROWTH

Goals:

- want to evaluate program's efficiency when input is very big
- want to express the growth of program's run time as input size grows
- want to put an upper bound on growth as tight as possible
- do not need to be precise: "order of" not "exact" growth
- we will look at largest factors in run time (which section of the program will take the longest to run?)
- thus, generally we want tight upper bound on growth, as function of size of input, in worst case

MEASURING ORDER OF GROWTH: BIG OH NOTATION

Big Oh notation measures an upper bound on the asymptotic growth, often called order of growth

Big Oh or O() is used to describe worst case

- worst case occurs often and is the bottleneck when a program runs
- express rate of growth of program relative to the input size
- evaluate algorithm **NOT** machine or implementation

EXACT STEPS vs O()

- computes factorial
- number of steps:
- oluj worst case asymptotic complexity:

1+50+1

- ignore additive constants
- ignore multiplicative constants

WHAT DOES O(N) MEASURE?

- Interested in describing how amount of time needed grows as size of (input to) problem grows
- Thus, given an expression for the number of operations needed to compute an algorithm, want to know asymptotic behavior as size of problem gets large
- Hence, will focus on term that grows most rapidly in a sum of terms
- And will ignore multiplicative constants, since want to know how rapidly time required increases as increase size of input

SIMPLIFICATION EXAMPLES

- drop constants and multiplicative factors
- focus on dominant terms

0

$$O(n^{2}) : n^{2} + 2n + 2$$

$$O(n^{2}) : n^{2} + 100000n + 3^{1000}$$

$$O(n) : log(n) + n + 4$$

$$(n \log n) : 0.0001 * n * log(n) + 300n$$

$$O(3^{n}) : 2n^{30} + 3^{n}$$

TYPES OF ORDERS OF GROWTH

ANALYZING PROGRAMS AND THEIR COMPLEXITY

combine complexity classes

- analyze statements inside functions
- apply some rules, focus on dominant term

Law of Addition for O():

- used with sequential statements
- O(f(n)) + O(g(n)) is O(f(n) + g(n))
- for example,

print('a')

for j in range(n*n):
 print('b')

is $O(n) + O(n^*n) = O(n+n^2) = O(n^2)$ because of dominant term

Oluj

o(n*n)

0(n) + 0(n*n)

ANALYZING PROGRAMS AND THEIR COMPLEXITY

combine complexity classes

- analyze statements inside functions
- apply some rules, focus on dominant term

Law of Multiplication for O():

- used with nested statements/loops
- O(f(n)) * O(g(n)) is O(f(n) * g(n))
- for example,

```
for i in range(n):
```

image(n):
for j in range(n):
 print('a')
 'O(n) = O(n*n) = O(n2) is $O(n)*O(n) = O(n*n) = O(n^2)$ because the outer loop goes n times and the inner loop goes n times for every outer loop iter.

COMPLEXITY CLASSES

- O(1) denotes constant running time
- O(log n) denotes logarithmic running time
- O(n) denotes linear running time
- O(n log n) denotes log-linear running time
- O(n^c) denotes polynomial running time (c is a constant)
- O(cⁿ) denotes exponential running time (c is a constant being raised to a power based on size of input)

COMPLEXITY CLASSES ORDERED LOW TO HIGH

COMPLEXITY GROWTH

	CLASS	n=10	= 100	= 1000	= 1000000
	O(1)	1	1	1	1
	O(log n)	1	2	3	6
	O(n)	10	100	1000	1000000
	O(n log n)	10	200	3000	6000000
	O(n^2)	100	10000	1000000	1000000000000
	O(2^n)	1024	12676506 00228229 40149670 3205376	1071508607186267320948425049060 0018105614048117055336074437503 8837035105112493612249319837881 5695858127594672917553146825187 1452856923140435984577574698574 8039345677748242309854210746050 6237114187795418215304647498358 1941267398767559165543946077062 9145711964776865421676604298316 52624386837205668069376	Good luck!!

LINEAR COMPLEXITY

Simple iterative loop algorithms are typically linear in complexity

LINEAR SEARCH ON UNSORTED LIST

- must look through all elements to decide it's not there -Assumes we can
- O(len(L)) for the loop * O(1) to test if e == L[i] $\circ O(1 + 4n + 1) = O(4n + 2) = O(n)$
- overall complexity is O(n) where n is len(L)

retrieve element

time

of list in constant

CONSTANT TIME LIST ACCESS

LINEAR SEARCH ON SORTED LIST

```
def search(L, e):
    for i in range(len(L)):
        if L[i] == e:
            return True
        if L[i] > e:
            return False
    return False
```

- to look at whole list
- O(len(L)) for the loop * O(1) to test if e == L[i] Norst case whole list
 overall complexity is O(n)
- NOTE: order of growth is same, though run time may differ for two search methods

LINEAR COMPLEXITY

- searching a list in sequence to see if an element is present
- add characters of a string, assumed to be composed of decimal digits

```
def addDigits(s):
    val = 0
    for c in s:
        val += int(c)
    return val
```

LINEAR COMPLEXITY

complexity often depends on number of iterations

```
def fact_iter(n):
```

```
prod = 1
for i in range(1, n+1):
    prod *= i
return prod
```

- number of times around loop is n
- number of operations inside loop is a constant (in this case, 3 set i, multiply, set prod)
 O(1 + 3n + 1) = O(3n + 2) = O(n)
- overall just O(n)

NESTED LOOPS

- simple loops are linear in complexity
- what about loops that have loops within them?

determine if one list is subset of second, i.e., every element of first, appears in second (assume no duplicates)

```
def isSubset(L1, L2):
    for e1 in L1:
        matched = False
        for e2 in L2:
            if e1 == e2:
                matched = True
                break
        if not matched:
            return False
    return True
```

```
def isSubset(L1, L2):
    for e1 in L1:
        matched = False
        for e2 in L2:
            if e1 == e2:
                matched = True
                break
        if not matched:
                return False
    return True
```

outer loop executed len(L1) times

each iteration will execute inner loop up to len(L2) times, with constant number of operations

*O(len(L1)*len(L2))*

worst case when L1 and L2 same length, none of elements of L1 in L2

O(len(L1)²)

find intersection of two lists, return a list with each element appearing only once

```
def intersect(L1, L2):
    tmp = []
    for e1 in L1:
        for e2 in L2:
            if e1 == e2:
               tmp.append(e1)
    res = []
    for e in tmp:
        if not(e in res):
            res.append(e)
    return res
```

```
def intersect(L1, L2):
    tmp = []
    for e1 in L1:
        for e2 in L2:
            if e1 == e2:
               tmp.append(e1)
    res = []
    for e in tmp:
        if not(e in res):
            res.append(e)
    return res
```

first nested loop takes len(L1)*len(L2) steps

second loop takes at most *len(L1)* steps

determining if element in list might take *len(L1)* steps

if we assume lists are of roughly same length, then

O(len(L1)^2)

O() FOR NESTED LOOPS

```
def g(n):
    """ assume n >= 0 """
    x = 0
    for i in range(n):
        for j in range(n):
            x += 1
    return x
```

- computes n² very inefficiently
- when dealing with nested loops, look at the ranges
- nested loops, each iterating n times
- O(n²)

THIS TIME AND NEXT TIME

- have seen examples of loops, and nested loops
- give rise to linear and quadratic complexity algorithms
- next time, will more carefully examine examples from each of the different complexity classes

MIT OpenCourseWare https://ocw.mit.edu

6.0001 Introduction to Computer Science and Programming in Python Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.