
MITOCW | watch?v=6LOwPhPDwVc

The following content is provided under a Creative Commons license.

Your support will help MIT OpenCourseWare continue to offer high

quality educational resources for free. To make a donation or view

additional materials from hundreds of MIT courses, visit MIT

OpenCourseWare at ocw.mit.edu.

PROFESSOR: So, for the last two lectures we've been talking about analyzing

algorithms, complexity, orders of growth. How do we estimate the cost of

an algorithm as the size of the input grows? And as I've said several

times, I'll say at least once more, how do we also turn it the other

direction? How do we use thoughts about choices of pieces of algorithm

in terms of implications on the cost it's going to take us to compute?

We saw last time a set of examples-- constant algorithms, linear

algorithms, logarithmic algorithms, linear algorithms, quadratic

algorithms, exponential algorithms. Today, what I'm going to do is fill in

one more piece, a log linear algorithm-- something that's really a nice

kind of algorithm to have-- and use it to talk about one last class of

algorithms that are really valuable, and those are searching and sorting

algorithms.

So a search algorithm. Kind of an obvious statement. You use them all

the time when you go to Google or Bing or whatever your favorite

search mechanism on the web is. It's just a way to find an item or a

group of items from a collection. If you think about it, that collection

could be either implicit or explicit. So way back at the beginning of the

term, we saw an example of a search algorithm when you were looking

for square roots. And we saw simple things like exhaustive enumeration.

We'd go through all the possibilities. We saw our first version of bisection

search there, where you would do approximations. Newton-Raphson--

these are all examples of a search algorithm where the collection is

implicit. So all the numbers between some point that some other point.



More common is a search algorithm where the collection is explicit. I

don't know. For example, I've got all the data records of students and I

want to know how do I find a particular student, so I can record that A

plus that everybody in this room is going to get next Tuesday on that

exam? That's not a promise. Sorry. But we'll work on it. So could do it

implicit, could do it explicit. Today I want to focus on doing search

explicitly. And it could be on different kinds of collections, but I'm going

to focus-- just as an example-- on search over lists. And to make it a

little easier, let's just do search over lists of numbers. But it could

obviously be other kinds of elements.

Now you've already seen some of this, right? We did search where we

said, we can do linear search. Brute force. Just walk down the list

looking at everything till we either find the thing we're looking for or we

get to the end of the list. Sometimes also called British Museum

algorithm or exhaustive enumeration. I go through everything in the list.

Nice news is, the list doesn't have to be sorted. It could be just in

arbitrary order. What we saw is that the expected-- sorry, not expected.

The worst case behavior is linear. In the worst case, the element's not in

the list. I got to look at everything. So it's going to be linear in terms of

complexity.

And then we looked at bisection search, where we said the list needs to

be sorted. But if it is, we can actually be much more efficient because we

can take advantage of the sorting to cut down the size of the problem.

And I'll remind you about both of those. There was our simple little linear

search. Right? Set a flag that says, I haven't yet found it. And then just

loop over the indices into the list. I could have also just looped directly

over the list itself, checking to see if the ith member of the list is the thing

I'm looking for. If it is, change the flag to true so that when I come out of

all of this I'll return the flag-- either false because it was set that way

initially or true because I found it.

And of course what we knew is we have to look at everything to see if it's

there or not. I could speed this up by just returning true at this point.



While that would improve the average case, doesn't improve the worst

case. And that's the thing we usually are concerned about, because in

the worst case I've got to go through everything. And just to remind you,

we said this is order length of the list. To go around this part-- the loop

right here-- and inside the loop, it's constant work. I'm doing the same

number of things each time. That's order n times order 1. And by our

rules, that's just order n. So it's linear in the size of the problem.

OK. We said we could do it on sorted lists. But just again, we'll walk

down the list. Again, here I could loop over everything in the list,

checking to see if it's the thing I want. Return true. And if I ever get to a

point where the element of the list is bigger than the thing I'm looking

for, I know it can't be in the rest of the list because all the things to the

right are bigger yet. I could just Return false and drop out. In terms of

average behavior, this is better because it's going to stop as soon as it

gets to a point where it can rule everything else out. But in terms of

complexity, it's still order n. Because I still on average have-- not

average. In the worst case, I'm still going to be looking n times through

the loop before I get to a point where I can decide to bail out of it. So

order n.

And then finally-- last piece of recap-- bisection search. Repeat again.

The idea here is, take the midpoint of the list. Look at that element. If it's

the thing I'm looking for, great. I just won the lottery. If it isn't, decide is

the thing I'm looking for bigger or less than that middle point. If it's

bigger than that, I only use the upper half of the list. If it's less than that,

I only use the lower half of the list. And the characteristic here was, at

each step, I'm reducing the size of the problem in half. I'm throwing

away half of the remaining list at each step.

And I'll just remind you of that code. I know it's a lot here, but just to

remind you. It said, down here if I've got an empty list, it can't be there.

I'm going to Return false. Otherwise call this little helper function with the

list, the thing for which I'm searching, and the beginning and end point

indices into the list. Initially the start and the very end. And this code up



here basically says, if those two numbers are the same I'm down to a list

of one. Just check to see if it's the thing I'm looking for. Otherwise, pick

something halfway in between. And ignore this case for the moment.

Basically then check to see, is the thing at that point bigger than e? In

which case, I'm in general going to call this only with from the low point

to the midpoint. Otherwise I'm going to call this with the midpoint to high.

And that was just this idea of, keep cutting down in half the size of the

list.

Last piece of the recap-- the thing we wanted you to see here-- is there

are the two recursive calls. I'm only going to do one because I'm making

a decision. At each step, I'm cutting down the problem by half. And that

says the number of steps, the number of times I'm going to iterate

through here, will be log in the length of the list. And if that still doesn't

make sense to you, it says, I need to know when 1 over 2 to the k--

where k is the number of steps-- is equal to 1. Because in each step, I'm

reducing by half. And that's when k is log base 2 of n. So that's why it's

log linear.

And so this just reminds you. Again, that recap. Number of calls

reduced-- or, sorry. The call gets reduced by a factor or two each time.

I'm going to have a log n work going around it. And inside it's a constant

amount of work because I'm just passing the pointers, I'm not actually

copying the list. And that's a nice state to be.

OK, so-- sounds good. Could just use linear search. It's going to be

linear. When you use binary search or bisection search, we can do it in

log time. That's great. We assumed the list was sorted, but all right. So

that lens basically says, OK. So when does it make sense to sort the list

and then do the search? Right? Because if I can sort the list cheaply,

then the search is going to be logarithmic. That's really what I would like.

This little expression basically says, let's let sort be the cost of sorting

the list. I want to know when that cost plus something that's order log n--

which is what it's going to cost me to do this search. When is that less

than something that's order n? Because then it's going to be better to do



the sort first than do the search. And so I can just rearrange it. It needs

to be, when does the cost of sorting-- when is it last than this

expression? Which basically says, when is sorting going to be less

expensive than the linear cost?

Crud. Actually, good news for you, right? This is a really short lecture.

Because it says it's never true. Ouch. Don't worry. We've got more to go

on the lecture. The reason it can't be true-- if you think about it just

informally-- is, if I've got a collection of n elements and I want to sort it,

I've got to look at each one of those elements at least once. Right? I

have to look at them to decide where they go. Oh, that's n elements. So

sorting must be at least order n, because I got to look at everything. And

in fact as it says there, I'm going to have to use at least linear time to do

the sort.

Sounds like we're stuck, but we're not. And the reason is, often when I

want to search something I'm going to do multiple searches, but I may

only want to sort the list once. In fact, I probably only want to sort the list

once. So in that case, I'm spreading out the cost. I'm amortizing the

expense of the sort.

And now what I want to know is, if I'm going to do k searches, the cost of

those k searches I know is going to be k log n-- because it's log to do

the search. And I simply need to know, is the cost of sorting plus this--

can I have something where it's less than k searches just using linear

search? And the answer is, yes. There are going to be, for large k's,

ways in which we can do the sort where the sort time becomes

irrelevant, that the cost is really dominated by this search.

And so what I want to do now is look at-- all right. How could we do the

sort reasonably efficiently? It's going to have to be at least linear. We're

going to see it's going to be a little more than linear. But if I could do it

reasonably, I'm going to be in good shape here. So what I want to do is

show you a number of ways in which we can do sorting-- take a list of

elements and sort them from, in this case, smaller to higher or

increasing order. So here's my goal. I want to efficiently sort a list. I want



to see if we can do this as efficiently as possible.

I'm going to start, you might say, with a humorous version of sort. You're

all convinced that my humor is non-existent. You're right. But it sets the

stage for it. This is a sort. You can look it up. It's called monkey sort,

BOGO sort, stupid sort, slow sort, permutation sort, shotgun sort. And

here's how it works. Anna has nicely given me a set of numbers on

cards here. Here's how you do BOGO sort. I got to do that better. I got

to spread them out randomly, like this. Oh good. I'm going to have to--

sorry, Tom. I'm not walking. And now I pick them up, saying, is that less

than this? Which is less than-- oh, crud. They're not sorted. All right. I

pick them all up and I do it again. A little brain damage, right?

Now it's intended to get your attention. I did. I heard a couple of

chuckles. Those are A students, by the way. I heard a couple of

chuckles here. We could actually do this exhaustively. Basically it's

called permutation sort because you could search through all possible

permutations to see if you find something that's sorted. That, by the

way-- the complexity of that is something like n factorial, which for large

n is n to the nth power. And if n's anything bigger than about 2, don't do

it. Right? But it would be a way to think about doing this.

All right. Now, having caught the humorous version of this, how could we

do this a little bit better? Oh sorry. I should say, what's the complexity?

There's a nice crisp definition of BOGO sort. Its best case is order n,

because I just need to check it's sorted. Its average case is n factorial

and its worst case, if I'm just doing it randomly, is God knows. Because I

could be doing it here forever. So we're going to move on.

Here's a second way to do it called bubble sort. I'm going to do this with

a small version of this. I'm going to put out a set. I'll turn these up so you

can see them in a second. The idea of bubble sort is, I'm going to start

at-- I'm going to call this the front end of the list. And I'm going to walk

down, comparing elements pairwise. And I'm always going to move the

larger one over. So I start here and I say, 1 is less than 11. I'm OK. 11's

bigger than five. I'm going to bubble that up. 11's bigger than 6. I'm



going to bubble that up. 11's bigger than 2. I've basically bubbled 11 to

the end.

Now I go back here. I say, 1 is less than 5. That's good. 5 is less than 6.

That's good. Ah, 6 is bigger than 2. Bubble that. 6 is less than 11. You

get the idea-- comparison, comparison, and swap. Comparison,

comparison. And now if I go back to this part and do it, you'll notice

that's in the right order. That's in the right order. That's in the right order.

That's in the right order. I'm done. Small round of applause, please. I

was able to sort five elements. Thank you.

The little video is showing the same thing. You can see the idea here.

It's called bubble sort because you're literally bubbling things up to the

end of the list. It's pretty simple to do. You're just swapping pairs. And as

you saw, when I get to the end of the list I go back and do it until I have

a pass where I go all the way through the list and I don't do any swaps.

And in that case I know I'm done because everything's in order, and I

can stop. One of the properties of it is that the largest unsorted element

is always at the end after the pass. In other words, after the first one I

know that the largest element's at the end. After the second one, the

largest thing left is going to be in the next place. And that tells me,

among other things, that this is going to take no more than n times

through the list to succeed. It might actually take fewer than that.

OK. Again let's look at some code for it. Let's look at its complexity and

let's actually run this. So here is a little simple version of bubble sort. I'm

going to set a flag up here. I'm going to call its swap initially to false.

That's going to let me tell when I'm done, when I've gone through

everything in the list without doing a swap. And then I'm going to loop.

As long as swap is false-- so the first time through it's going to do that

loop. I set swap initially to true, and notice what I then do. I let j range

from 1 up to the length of the list, and I look at the jth element and the

previous element. If the previous element is bigger, I'm going to flip

them. Right there. And that's just doing that swap, what I just did down

here.



And if that's the case, I'm going to set the flag to false. Which says, I've

done at least one bubble as part of this. Which means when I come out

of here and go back around to the loop, it's going to do it again. And it

will do it until all of this succeeds without this ever being true, in which

case that's true, which makes that false. And it will drop out. OK?

Let's look at an example of this running. It's just to give you a sense of

that, assuming I can find the right place here. So there is, again, a

version of bubble sort on the side. And I'm going to bring this down to

the bottom I've got a little test list there. And I've put a print statement in

it. So you can see each time through the loop, what's the form of the list

as it starts. And assuming I've done this right-- here you go.

There's the list the first time through. Notice after one pass, 25's at the

end of the list-- the biggest element. Exactly what I like. But you can also

see a few other things have flipped. Right? Right in there, there have

been some other swaps as it bubbled through. And in fact, you can see

it's-- well, you can see that idea. You can see 25 moving through. Notice

on the next step, a whole bunch of the list is actually in the right order.

It's just because I got lucky. All I can guarantee is that the second

largest element is the second from the end of the list. But you can see

here. Even though the list is, I think, nine long, it only took us four

passes through. So this is nice. It says, at most, n times through the list.

And at the end, we actually get out something that's in the right form.

OK. So let's go back to this and basically say, what's the complexity?

Well that's length n, right? Has to be. I'm going through the entire list.

And inside of there is just constant work. Four operations. I'm doing a

test. Sorry, five. I'm doing a test. And then depending whether that test

is true or not, I'm setting a flag and doing some movement of things

around. But it's just constant. I don't care about the five. And there, how

many times do I go around the loop? In the worst case, n. All I can

guarantee is, after the first pass the biggest thing is here. After the

second pass, the second biggest thing is there. After the third pass-- you

get the idea.



So I've got order and things inside the loop, and I'm doing that loop n

times. And I hope that looks familiar. We've talked about this. Right?

This is nested loops. What's this? Quadratic. So it's order n squared,

where n is the length of the list. Now as you also saw, on average, it

could be less than that. But it's going to be order n squared.

OK. That's one possibility. Here's a second nice, simple, sort algorithm.

It's called selection sort. You can kind of think of this as going the other

way. Not completely, but going the other way. And when I say going the

other way, the idea here is that I'm going to find the smallest element in

the list. And I'm going to stick it at the front of the list when I'm done, and

simply swap that place with whatever was there. Flip them. I might do a

few other flips along the way, depending how I implement this.

Next, pass. I'm just going to look at everything but the first element,

because I know that one's done. I'm going to do the same thing. Find

the smallest element remaining in the list, put it in the second spot, and

keep doing that. What I know is, if I implement this correctly, after i steps

the first i elements of the list will be sorted. And everything in the rest of

the list has to be bigger than the largest thing in the first part of the list.

OK. So we could build that. Before we do it, I'm going to show you a little

video starring Professor Guttag. This is his cameo performance here.

But I want to just show you an example of this using not numbers, but

people.

[VIDEO PLAYBACK]

- All right. So now we're going to do

selection sort. The idea here is that each

step we're going to select the shortest

person and put them next in line of the

sorted group. So we'll bring the leftmost

person forward, and we will compare her

to everybody else. So one at a time, step

forward. You're still the winner. You go



back. Please step forward.

PROFESSOR: And watch the number of comparisons that go on, by the way. We're

going to come back to that.

- Next. Still the winner. Next. Ah. A new

winner. All right. So you can take her

place.

PROFESSOR: So here, we're choosing to actually insert into the spot in the Line We

could have put her back at the front, but either one will work.

- Now we'll compare. Same old winner.

Same winner. No change. It's getting kind

of boring. Don't fall, that-- same winner.

Please.

PROFESSOR: This is a tough one.

- Oh. Close, but I think you're still shorter.

All right. Next. No change, which means

you are the first in line. Congratulations.

PROFESSOR: So, smallest element now going to be the first slot.

- Now you step forward, and we'll

compare you.

PROFESSOR: I would invite you to watch the left hand of the list. Notice how it is slowly

building up at each stage to have that portion sorted. And we

deliberately admit students to be of different heights, so John can do this

demo.

- You are the winner. Take your place in

line. Next. It's you. And once again, we

have a lovely group of students sorted in

height order.



[END PLAYBACK]

[APPLAUSE]

PROFESSOR: And check out-- I want you to remember number of comparisons-- 55.

Not that the [INAUDIBLE], but I want you to see a comparison as we go

on in a second.

So again, selection sort. This is this idea of, find the smallest element.

Put it at the front. I might do a little number of flips, as you can see, here

along the way. But this is the same animation of that. So let's first of all

convince ourselves it will do the right thing, and then look at some code,

and then run the code.

So to convince ourselves that this is going to do the right thing, we could

talk about something that we often refer to as a loop invariant. We're

going to write a loop, but we're going to walk through this. And the

invariant here-- and we want to just demonstrate if it's true at the

beginning and it's true at each step. Therefore, by induction as we did

earlier, I can conclude it's true always. Is that if I'm given the prefix or

the first part of a list from 0 up to i, and a suffix or a second part of the

list from i plus 1 up to the end of the overall list-- given that, then I want

to assert that the invariant is that the prefix is sorted and no element of

the prefix is larger than the smallest element of the suffix. Just what I

said earlier. It says, at any stage here-- if this is the amount of sort I've

done so far-- I can guarantee, I'm going to claim, this will be sorted. And

everything here is bigger than that thing there.

How do I prove it? Well the base case is really easy. In the base case,

the prefix is empty. I don't have anything, so it's obviously sorted. And

everything in the suffix is bigger than anything in the prefix. So I'm fine.

And then I just want to say, as long as I write my code so that this step is

true, then I'm going to move the smallest element from the suffix-- the

second part of the list-- to the end of the prefix. Since the prefix was

sorted, this is now sorted. And everything in the suffix is still going to be

bigger than everything in the prefix. And as a consequence, by



induction, this is going to give me something that says it's always going

to be correct.

So here's code that would do that. Here. I'm just going to set a little thing

called the start of suffix, or soft start. Initially it's going to point to the

beginning of the list. And then I'm going to run a loop. And as long as I

still have things to search in the list, that that pointer doesn't point to the

end of the list, what am I going to do? I'm going to loop over everything

from that point to the end of the list, comparing it to the thing at that

point. If it's less than, I'm going to do a swap because I wanted to move

it up. And you can see, by the time I get through this loop I will have

found the smallest element in the remainder of the list. And I would have

put it at that spot, whatever suffix start points to.

And when I've done all of that, I just change this by one. Having found

the smallest element, I've stuck it at spot zero. I'll do the same thing.

Having found the next smallest element, I know it's at point one. And I'll

just continue around. One of the things you can see here is, as opposed

to bubble sort, this one is going to take n times around the loop because

I'm only moving this pointer by one So it starts at 0, and then 1, and then

2, all the way up to n minus 1.

You can also see in this particular implementation, while I'm certainly

ensuring that the smallest element goes into that spot, I may do a few

other flips along the way. I'm going to find something I think is the

smallest element, put it there and put that element here. And then when

I find another smaller element, I may do that flip. I could have

implemented this where I literally search for the smallest element and

only move that. Doesn't make any difference in terms of the complexity.

All right. What's the complexity here? Already said this part. I will loop n

times, because I start at 0 and then 1. You get the idea. Inside of the

loop I'm going to walk down the remainder of the list, which is initially n.

And then n minus 1, and then n minus 2 times. But we've seen that

before as well. While they get shorter, that complexity is still quadratic.

Order n times going through this process. Within the process, order n



things that I have to compare. And yes, n gets smaller. But we know that

that n term, if you like to dominate. So again, this is quadratic.

OK. Before you believe that all sorting algorithms are quadratic, I want to

show you the last one, the one that actually is one of the-- I think-- the

prettiest algorithms around, and a great example of a more efficient

algorithm. It's called merge sort. Merge sort takes an approach we've

seen before. We talked about divide and conquer. Break the problem

down into smaller versions of the same problem. And once you've got

those solutions, bring the answer back together. For merge sort, that's

pretty easy. It says, if I've got a list of 0 or 1 elements, it's sorted. Duh.

OK. If I got a list of more than 1 element, here's my trick. I'm going to

split it into two lists. I'm going to sort them. And when I'm done, I'm just

going to merge those two lists into one list. And the merge is easy.

Because if I've got two lists that are sorted, I just need to look at the first

element of each, take the one that's smaller. Add it to my result. And

keep doing that until one of the lists is empty. And then just copy the

remainder of the other list. You can probably already get a sense of

what the cost is going to be here, because this is cutting the problem in

half.

Now I've got two pieces. So I need to think about both of them. I want to

give you a couple of visualizations of this. Here's the first one. It says,

basically, I've got a big unsorted list. I'm going to split it. And I'm going to

split it. And I'm going to split it. Until I get down to just lists that are either

0 or 1, which by definition are sorted. And once I'm at that level, then I

just have to merge them into a sorted list and then merge them pairwise

into a sorted list. And you get the idea.

So it's divide and conquer. The divide is dividing it up into smaller

pieces. The conquer is merging them back together. And we have

Professor Guttag back for an encore, together with his students. So let's

show you an example of merge sort.

[VIDEO PLAYBACK]



- So we're about to demonstrate merge

sort. And we're going to sort this rather

motley collection of MIT students by

height. So the first thing we need to do is,

we're going to ask everyone to split into a

group of two. So you split a little bit. You

two are together. You two are together.

You two are together. You two are

together. And you are all by yourself. I'm

sorry.

PROFESSOR: Poor Anna.

- All right. So now let's take the first

group. Take a step down. And what we

do is, we sort this group by height, with

the shortest on the left. And look at this.

We don't have to do anything. Thank you.

Feel free to go back up. We then sort the

next pair. Please. And it looks to me like

we need to switch. All right. Take a step

back. Ladies-- OK. Ladies, gentlemen--

also OK. And again, OK.

PROFESSOR: Notice each subgroup is now sorted. Which is great.

- And I think you're in the correct order.

Now what we do is, we take these groups

and merge the groups. So let's have

these two-- going to sort these groups,

have them step forward. And now what

we're doing is, we're doing a merge of

the two sorted groups. So we start by

merging them. We'll take the leftmost

person in this group and compare her to

the first person in this group, and decide.



She's still the shortest. Take a step back.

Now we're going to look at you and say,

you're actually taller than this fellow. So

you now step up there. And we're good

here. Both of you take a step back.

Now we'll take these two groups and follow the same procedure. We'll

merge them. Let's see. We'll compare you-- the first person in this group

to the first person in this group. Now it's a little tricky. So let's see, the

two of you compare. Let's see, back to back. We have a winner. Step

back. And now we need to compare the shortest person in this group to

the shortest person in this group. We have a winner. It's you. I'm sorry.

And now we just-- we're OK. Please step back.

Now we'll have these two groups come forward. We'll compare the

shortest person in this group to the shortest person in that group. I

actually need you guys to get back to back here. You are the winner.

And it's pretty clear that the shortest person in this group is shorter than

the shortest person in that group. So you go there and you step back.

PROFESSOR: Notice the groups. Now all sorted.

- And now we repeat the same process.

PROFESSOR: And notice how the whole subgroup now goes up once we know that

one group is empty.

- And you can see that we have a group

of students sorted in order by height.

[END PLAYBACK]

[APPLAUSE]

PROFESSOR: Remember the first number, right? 55, 28. Now it's just numbers but you

can see the expectation is, this is going to take less time. And it certainly

did there. So again just to demo another way visually. I'm sorting-- sorry.



did there. So again just to demo another way visually. I'm sorting-- sorry.

I am splitting down until I get small things, and then just merging them

up. I may have to do multiple passes through here, but it's going to be

hopefully faster than the other methods we looked at.

I'm going to show you code in a second, and then we're going to run it

just to see it. But let me stress one more time just the idea of merging.

You can see the idea. I keep splitting down till I got something small

enough. And I want to merge them back. The idea of merging-- you've

seen it from Professor Guttag. But I just want to highlight why this is

going to be efficient. If I've got two lists: list 1 and list 2, the things left

there. Process is very simple. I pull out the smallest element of each. I

compare them. And I simply put the smallest one into the result, move

on in that first list. So the 1 disappears from that left list. And now again I

pull up just the smallest element of each one, do the comparison.

Smallest one goes to the end of my result. And I drop that element from

its list. So I've now taken 1 from list 1 and one from list 2. You get the

idea.

The reason I want to give you this visualization-- sorry. Let me do the

last step. Once I get to a place where one of the lists is empty, just copy

the rest of the list onto the end. You can see already a hint of the code.

And that is, that I'm only going to ever look at each element of each

sublist once as I do the merge. And that's a nice property. Having had

them sorted, I don't need to do lots of interior comparisons. I'm only

comparing the ends of the list. I only, therefore, look at each element--

the number of comparisons, rather, I should say. I may look at each

element more than once. The number of comparisons is going to be, at

most, the number of elements in both lists. And that's going to be a nice

Q as we think about how to solve it.

So here's the code to merge, and then we'll write Merge Sort. And I

know there's a lot of code here, but we can walk through it and get a

good sense of it. I'm going to set up a variable called Result that's going

to hold my answer. And I'm going to set up two indices, i and j, that are

initially 0. They're pointing to the beginning. And remember, the input



here is two lists that we know are sorted-- or should be sorted, or we

screwed up in some way. So initially, i and j are both pointing to the

beginning of the left and right list. And look at what we do. We say, as

long as there's still something in the left list and still something in the

right list-- i is less than the length of left, j is less than the length of right.

Do the comparison. If the left wants smaller, add it to the end of result.

To the end of result, right? I'm appending it because I want it to be in

that sorted order. And increase i. If it's not, add the right one to the end

of result and increase j. And I'll just keep doing that until I exhaust one of

the lists. And when I do I can basically say, if the right list is empty, I

know if I get out of here they can't both be true. In other words, if there's

still something in the left list, just put it on the end. Otherwise if the only

things left are in the right list, just put them on the end. So I'm just

walking down the list, doing the comparison, adding the smallest

element to my result. And when I'm done, I just return result.

Complexity we can already begin to see here, right? This says the left

and right sublists are ordered, so I'm just moving the indices depending

on which one holds the smaller element. And when I get done, I'm just

returning the rest of the list. So what's the complexity here? I'm going to

do this a little more informally. You could actually do that kind of

relationship I did last time. But what am I doing? I'm going through the

two lists, but only one time through each of those two lists. I'm only

comparing the smallest elements. So as I already said, this says that the

number of elements I copy will be everything in the left list and

everything in the right list. So that order is just the length of left plus the

length of right.

And how many comparisons do I do? The most I have to do is however

many are in the longer list. Right? That's the maximum number I need to

have. Oh, that's nice. That says, if the lists are of order n-- I'm doing

order n copies, because order n plus order n is just 2n, which is order n-

- then I'm doing order n comparisons. So it's linear in the length of the

lists.



OK. Sounds good. That just does the merge. How do I do merge sort?

Well we said it. Break the problem in half. Keep doing it until I get sorted

lists. And then grow them back up. So there's merge sort. It says, if the

list is either empty or of length 1, just return a copy of the list. It's sorted.

Otherwise find the middle point-- there's that integer division-- and split.

Split the list everything up to the middle point and do merge sort on that.

Split everything in the list from the middle point on. Do merge sort on

that. And when I get back those two sorted lists, just merge them.

Again, I hope you can see what the order of growth should be here.

Cutting the problem down in half at each step. So the number of times I

should have to go through this should be to log n the size of the original

list. And you can see why we call it divide and conquer. I'm dividing it

down into small pieces until I have a simple solution and then I'm

growing that solution back up. So there is the base case, there's the

divide, and there's the nice conquer [INAUDIBLE] piece of this.

OK. I'm going to show you an example of that. But let's actually look at

some code-- sorry about that. Let's look at some code to do this. And in

fact I meant to do this earlier and didn't. I also have a version of bubble

sort here. Sorry-- selection sort. I've already done bubble sort. There is

selection sort. Let's uncomment this. And let's run both of those and just

see the comparison between them. Yeah, sorry-- just make that a little

easier to read. There we go.

So we saw a bubble sort. It only went through four times, so less than n

times. There's selection sort. And as I said to you, it has to do n passes

it because it can only ever guarantee that it gets one element at the

beginning. So you can in fact see, in this case, from the first or after the

initial input until the end of the first step, it looks like it didn't do anything

because it determined eventually that one was in the right spot. And

similarly I think there's another one right there where it doesn't do any--

or appears not to do anything. All it's guaranteeing is that the next

smallest element is in the right spot. As we get through to the end of it, it

in fact ends up in the right place.



And then let's look at merge sort and do one more visualization of this.

Again let me remove that. If we run it-- again, I've just put some print

statements in there. Here you can see a nice behavior. I start off calling

Merge Sort with that, which splits down into doing Merge Sort of this

portion. Eventually it's going to come back down there and do the

second one. It keeps doing it until it gets down to simple lists that it

knows are sorted. And then it merges it. Does the smaller pieces and

then merges it. And having now 2 merged things, it can do the next level

of merge. So you can see that it gets this nice reduction of problems

until it gets down to the smallest size.

So let's just look at one more visualization of that and then get the

complexity. So if I start out with this list-- sorry about that. What I need to

do is split it. Take the first one, split it. Keep doing that until I get down to

a base case where I know what those are and I simply merge them.

Pass it back up. Take the second piece. Split it until I get down to base

cases. Do the merge, which is nice and linear. Pass that back up.

Having done those two pieces, I do one more merge. And I do the same

thing.

I want you to see this, because again you can notice how many levels in

this tree log. Log in the size. Because at each stage here, I went from a

problem of 8 to two problems of 4. Each of those went to two problems

of 2, and each of those went to two problems of size 1.

All right. So the last piece is, what's the complexity? Here's a simple way

to think about it. At the top level, I start off with n elements. I've got two

sorted lists of size n over 2. And to merge them together, I need to do

order n work. Because as I said I got to do at least n comparisons where

n is the length of the list. And then I've got to do n plus n copies, which is

just order n. So I'm doing order n work.

At the second level, it gets a little more complicated. Now I've got

problems of size n over 4. But how many of them do I have? 4. Oh,

that's nice. Because what do I know about this? I know that I have to

copy each element at least once. So not at least once. I will copy each



element exactly once. And I'll do comparisons that are equal to the

length of the longer list. So I've got four sublists of length n over 4 that

says n elements. That's nice. Order n. At each step, the subproblems

get smaller but I have more of them. But the total size of the problem is

n. So the cost at each step is order n. How many times do I do it? Log n.

So this is log n iterations with order n work at each step. And this is a

wonderful example of a log linear algorithm. It's n log n, where n is the

length of the list.

So what you end up with, then, is-- all right, a joke version, some

reasonable ways of doing sort that are quick and easy to implement but

are quadratic, and then an elegant way of doing the search that's n log

n. And I'll remind you I started by saying, as long as I can make the cost

of sorting small enough I can amortize that cost. And if you go back and

look at last lecture's notes, you'll see n log n grows pretty slowly. And it's

actually a nice thing to do. It makes it reasonable to do the sort. And

then I can do the search in order n time.

And here's the last punchline. It's the fastest we can do. I'm going to

look at John again. I don't think anybody has found a faster sort

algorithm. Right? This is the best one can do. Unless you do-- sorry, the

best worst case. I'm sorry. John is absolute right. There are better

average cases. Again, our concern is worst case. So this is as good as

we're going to do in terms of a worst case algorithm. So there you now

have sorting algorithms and searching algorithms, and you've now seen-

- excuse me, sorry-- constant, log, linear, log linear, quadratic, and

exponential algorithms. I'll remind you, we want things as high up in that

hierarchy as possible.

All right. I have six minutes left. Some of you are going to leave us.

We're going to miss you, but that's OK. I'm sure we'll see later on. For

those of you hanging around, this isn't a bad time just to step back and

say, so what have we seen? And I want to do this just very quickly. I'm

sorry. And I'll remind you, we started by in some sense giving you a little

bit of a contract of things we were going to show you. And I would simply



suggest to you, what have we done? We've given you a sense of how to

represent knowledge with data structures, tuples, lists, dictionaries,

more complicated structures. We've shown you some good

computational metaphors, iteration, and loops. Recursion has a great

way of breaking problems down into simpler versions of the same

problem. And there really are metaphors. There are ways of thinking

about problems.

We've given you abstraction, the idea of capture a computation, bury it

in a procedure. You now have a contract. You don't need to know what

happens inside the procedure as long as it delivers the answer it says it

would. Or another way of saying it, you can delegate it to somebody and

trust that you're going to get what you like out of it. We've seen classes

and methods as a wonderful way to modularize systems, to capture

combinations of data and things that operate on them in a nice, elegant

way. And we just spent a week and a half talking about classes of

algorithms and their complexity.

If you step up a level, what we hope you've gotten out of this are a

couple of things. You've begun to learn computational modes of

thinking. How do I tackle a problem and divide and conquer? How do I

think about recursion as a tool in dealing with something? You've begun

to-- begun, I will use that word deliberately-- to master the art of

computational problem solving. How can you take a problem and turn it

into an algorithm? And especially, you've begun to have the ability to

make the computer do what you want it to. To say, if I've got a problem

from biology or chemistry or math or physics or chemical engineering or

mechanical engineering, how do I take that problem and say, here's how

I would design an algorithm to give me a simulation and a way of

evaluating what it does.

And so what we hope we've done is, we've started you down the path to

being able to think and act like a computer scientist. All right. Don't

panic. That doesn't mean you stare at people's shoes when you talk to

them. Not all computer scientists do that, just faculty. Sorry, John. So



what do computer scientists do? And this is actually meant to be serious.

And I put up two of my famous historical figures of computer scientists.

They do think computationally. They think about abstractions, about

algorithms, about automated execution. So the three A's of

computational thinking. And in the same way that traditionally you had

the three R's of reading, writing, and arithmetic, computational thinking

we hope is becoming a fundamental that every well-educated person is

going to need.

And that says, you think about the right abstraction. When you have a

problem in your [INAUDIBLE] what's the right abstraction? How do I pull

apart the pieces? How do I think about that in terms of decomposing

things into a relationship that I can use to solve problems? How do I

automate? How do I mechanize that abstraction? How do I use what I

know happens inside of the machine to write a sequence of steps in a

language I'm using to capture that process? And then finally, how do I

turn that into an algorithm? And that not only means I need a language

for describing those automated processes, and if you like allowing the

abstraction of details, but frankly also a way to communicate. If you have

to think crisply about how do I describe an algorithm, it's actually giving

you a way to crystallize or clarify your thinking about a problem. This is

not to say you should talk to your friends in Python. I don't recommend

it. But it does say you should use that thinking as a way of capturing

your ideas of what you're going to do.

And that leads, then, to this idea of, how difficult is a problem? How best

can I solve it? We've shown you these complexity classes and we've

hinted at the idea that in fact some problems are inherently more difficult

than others. That's something I hope you come back to as you go along.

And especially we want you to start thinking recursively. We want you to

think about how do I take a hard problem, break it up into simpler

versions of the same problem, and then construct the solution. And that

shows up lots of places. Right? Recursion is in all sorts of wonderful

places. So just to give you an example, I could say to you recursively,

"This lecture will end when I'm done talking about this lecture, which will



end when I'm done talking about this lecture, which will end when I'm

done--"

All right. You don't like infinite recursion. Good luck on the exam.


