
	 	 	
	

	

Lecture: Sampling and 
Standard Error 

6.0002	 LECTURE 8  
1

ssi282
Line



	 	 	
	 	 	 	 	

	

Announcements  

§Relevant reading: Chapter 17  
§No lecture Wednesday of next week!  

6.0002	 LECTURE 8  2

ssi282
Line



	 	 	 	 	 	
	 	 	 	 	 	 	

	 	
	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	

	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	

	 	

	

Recall Inferential Statistics  

§Inferential statistics: making inferences about a
populations by examining one or more random
samples	 drawn	 from that population 
§With Monte Carlo simulation we can generate lots of
random samples, and use them to compute confidence
intervals 
§But suppose we can’t create samples by simulation? 
◦ “According to the most recent poll Clinton leads Trump by 
3.2	 percentage points in	 swing states. The registered	 
voter sample is 835 with with a margin of error of plus or
minus 4 percentage	 points.” – October 2016 
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Probability Sampling  

§Each member of the population has a nonzero
probability of being included	 in	 a sample
§Simple random sampling:	each 	member 	has 	an 	equal
chance of	 being chosen
§Not always appropriate
◦ Are MIT undergraduates nerds?
◦ Consider a random sample of 100	 students
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Stratified Sampling  

§Stratified sampling
◦ Partition population into subgroups
◦ Take a simple random sample from each subgroup
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Stratified Sampling  

§When there are small subgroups that should be
represented
§When it is important that subgroups be represented
proportionally to their size in	 the population
§Can be used to reduced the needed size of sample
◦ Variability of subgroups less than of entire
population

§Requires care to do properly
§Well stick to simple random samples
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Data  

§From U.S. National Centers for Environmental
Information (NCEI)
§Daily high	 and	 low temperatures for
◦ 21	 different US cities
◦ ALBUQUERQUE, BALTIMORE, BOSTON, CHARLOTTE, CHICAGO,
DALLAS, DETROIT, LAS VEGAS, LOS ANGELES, MIAMI, NEW ORLEANS,
NEW YORK,	 PHILADELPHIA,	 PHOENIX,	 PORTLAND,	 SAN	 DIEGO,	 SAN
FRANCISCO, SAN JUAN, SEATTLE, ST LOUIS, TAMPA

◦ 1961	 – 2015
◦ 421,848	 data points	 (examples)

§Let’s use some code to look at the data
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New in	 Code  

§numpy.std is function in the numpymodule that
returns the standard deviation
§random.sample(population, sampleSize) returns a list
containing sampleSize randomly chosen distinct
elements of population
◦ Sampling without replacement
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Histogram of Entire	 Population  
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Histogram of Random 	Sample	 of	Size 100  
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Means	 and Standard Deviations  

§Population mean = 16.3
§Sample mean = 17.1
§Standard deviation of population = 9.44
§Standard deviation	 of sample = 10.4
§A	 happy accident, or something we should expect?
§Let’s try	 it 1000 times and plot the results
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New in	 Code  

§pylab.axvline(x = popMean,	 color	 = 'r')	 draws a red
vertical line at popMean on the x-axis 
§There’s also a pylab.axhline function 
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Try It 1000 Times  

±±
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Try It 1000 Times  

What’s	 the 95% 
confidence interval? 

16.28	 +- 1.96*0.94 
14.5	 - 18.1 

Includes population 
mean, but pretty 
wide 

Mean of sample Means = 16.3 Suppose we want a 
Standard deviation of sample means = 0.94 tighter bound? 
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Getting a	 Tighter Bound  

§Will drawing more samples help? 
◦ Let’s try	 increasing from 1000 to 2000 
◦ Standard deviation goes from 0.943 to 0.946 

§How about larger samples? 
◦ Let’s try	 increasing sample size from 100 to 200  
◦ Standard deviation goes from 0.943 to 0.662  
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	95% level. 

Error Bars, a Digression  

§Graphical representation of the variability of data
§Way to visualize uncertainty When confidence 

intervals don’t	 overlap,	 
we can conclude that 
means are	 statistically 
significantly different at 
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Let’s Look at	 Error Bars for Temperatures  

pylab.errorbar(xVals, sizeMeans,
yerr = 1.96*pylab.array(sizeSDs),  
fmt = 'o',
label = '95% Confidence Interval')  
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Sample Size and Standard Deviation  
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Larger Samples Seem	 to Be Better  

§Going from a	 sample size of	 50 to 600	 reduced the
confidence interval from about 1.2C to about 0.34C.
§But we are now looking at 600*100	 =	 600k examples
◦What has sampling bought us?
◦ Absolutely Nothing!
◦ Entire population contained ~422k	 samples
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What	 Can	 We Conclude from	 1 Sample?  

§More than you might think
§Thanks to the Central Limit
Theorem
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Recall Central Limit Theorem  

§Given a sufficiently large sample: 
◦1) The means	 of the samples	 in a set of samples	 (the
sample means) will be approximately normally 
distributed, 

◦2) This	 normal distribution will have a mean close to the
mean	 the	 population, and 

◦3) The variance of the sample means	 will be close to the 
variance of the population divided by the sample size. 

§Time to use the 3rd feature 
§Compute standard error of the mean (SEM or SE) 
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Standard Error	 of the Mean  

σSE = 
n

def sem(popSD, sampleSize):  
return popSD/sampleSize**0.5  

§Does it work?
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Testing the SEM  
sampleSizes = (25, 50, 100, 200, 300, 400, 500, 600)  
numTrials = 50  
population = getHighs()  
popSD = numpy.std(population)  
sems = []  
sampleSDs = []  
for size in sampleSizes:  

sems.append(sem(popSD, size))  
means = []  
for t in range(numTrials):  

sample = random.sample(population, size)  
means.append(sum(sample)/len(sample))  

sampleSDs.append(numpy.std(means))  
pylab.plot(sampleSizes, sampleSDs,  

label = 'Std of ' + str(numTrials) + ' means')  
pylab.plot(sampleSizes, sems, 'r--', label = 'SEM')  
pylab.xlabel('Sample Size')  
pylab.ylabel('Std and SEM')  
pylab.title('SD for ' + str(numTrials) + ' Means and SEM')  
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Standard Error	 of the Mean  

σSE = 
n

But, we don’t 
know	 standard 
deviation	 of 
population 

How might we  
approximate it?  
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Sample SD vs.	 Population SD  
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The 	Point  

§Once sample reaches a reasonable size, sample
standard deviation is a pretty good approximation to
population	 standard	 deviation
§True only for this example?
◦ Distribution	 of population?
◦ Size of population?
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Looking at	 Distributions 

def plotDistributions():  
uniform, normal, exp = [], [], []  
for i in range(100000):  

uniform.append(random.random())  
normal.append(random.gauss(0, 1))  
exp.append(random.expovariate(0.5))  

makeHist(uniform, 'Uniform', 'Value', 'Frequency')  
pylab.figure()  
makeHist(normal, 'Gaussian', 'Value', 'Frequency')  
pylab.figure()  
makeHist(exp, 'Exponential', 'Value', 'Frequency')  
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Three 	Different 	Distributions  

random.random() 

random.gauss(0, 1) 
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random.expovariate(0.5) 
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Does Distribution	 Matter?  

6.0002	 LECTURE 8  

Skew, a	 measure 
of	 the asymmetry	
of	 a probability	 
distribution, 
matters 
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Does Population	 Size Matter?  
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To Estimate Mean from a Single Sample  

§1) Choose	 sample	 size	 based on estimate	 of skew in
population
§2) Chose	 a random sample	 from the	 population
§3)	 Compute the mean and standard deviation of that
sample
§4)	 Use the standard deviation of that sample to
estimate	 the	 SE
§5)	 Use the estimated SE to generate confidence
intervals around the sample mean

Works great when we choose independent random samples.

Not always so easy to do, as political pollsters keep	 learning.  
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Are	200 	Samples 	Enough? 

numBad = 0  
for t in range(numTrials):  

sample = random.sample(temps, sampleSize)  
sampleMean = sum(sample)/sampleSize  
se = numpy.std(sample)/sampleSize**0.5  
if abs(popMean - sampleMean) > 1.96*se:  

numBad += 1  
print('Fraction outside 95% confidence interval =',  

numBad/numTrials)  

Fraction outside 95% confidence interval = 0.0511  
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