Lecture 7: Confidence
Intervals

Assumptions Underlying Empirical Rule

*The mean estimation error is zero

=The distribution of the errors in the estimates is
normal (Gaussian)

0.40 Nornlqal Dilstribultion, Mean|= 0 alnd SDI =1

0.35

0.30+

0.25+

0.20+

6.0002 LECTURE 6 2

Generating Normally Distributed Data

dist, numSamples [], 1000000

for 1 in range(numSamples):
dist.append(random.gauss(0, 100))

——

weights = [1/numSamples]*len(dist)
v = pylab.hist(dist, bins = 100,
weights = [1/numSamples]*len(dist))

ylab.xlabel('x")
pylab.ylabel('Relative Frequency') ‘\\\\\\\\

print('Fraction within ~200 of mean =',
sum(v[0][30:70]))

6.0002 LECTURE 7 3

Output

Discrete
Approximation
to PDF

Fraction within ~200 of mean = 0.957147

6.0002 LECTURE 7 4

PDF’s (recapping)

=Distributions defined by probability density functions
(PDFs)

=Probability of a random variable lying between two
values

=Defines a curve where the values on the x-axis lie
between minimum and maximum value of the variable

"Area under curve between two points, is probability of
example falling within that range

6.0002 LECTURE 7 5

PDF for Normal Distribution

def gaussian(x, mu, sigma):
factorl = (1.0/(sigma*((2*pylab.pi)**0.5)))
factor2 = pylab.e**-(((x-mu)**2)/(2*sigma**2))
return factorl*factor?

xVals, yvals = [], [] 1 _(—p)?
. P(x) = * e 202

zu; flgma =0, 1 () GVEE;
while x <= 4:

xVals.append(x)

yVals.append(gaussian(x, mu, sigma))

X += 0.05
pylab.plot(xVals, yVals)
pylab.title('Normal Distribution, mu = ' + str(mu)\

+ ', sigma = ' + str(sigma))

6.0002 LECTURE 7 6

Output

0.40_Normal Distribution, mu = 0, sigma =1

0.35

0.30

0.25

0.20

6.0002 LECTURE 7 .

Are values on y-axis
probabilities?

They are densities.
|.e., derivative of
cumulative
distribution
function.

Hence we use
integration to
interpret a PDF

A Digression

=SciPy library contains my useful mathematical
functions used by scientists and engineers

=scipy.integrate.quad has up to four arguments
° a function or method to be integrated
> a number representing the lower limit of the integration,

> a number representing the upper limit of the integration,
and

> an optional tuple supplying values for all arguments,
except the first, of the function to be integrated

=scipy.integrate.quad returns a tuple
o Approximation to result
o Estimate of absolute error

6.0002 LECTURE 7 8

Checking the Empirical Rule

import scipy.integrate €——
def gaussian(x, mu, sigma)

def checkEmpirical(numTrials):
for t in range(numTrials):
mu = random.randint(-10, 10)
sigma = random.randint(l, 10)
print('For mu =', mu, 'and sigma =', sigma)
for numStd in (1, 1.96, 3):
area = scipy.integrate.quad(gaussian,
mu-numStd*sigma,
mu+numStd*sigma,
(mu, sigma)) [0]
print(' Fraction within', numStd,
'std ="', round(area, 4))

6.0002 LECTURE 7 9

Results

For mu =9 andsigma=6
Fraction within 1 std = 0.6827
Fraction within 1.96 std = 0.95
Fraction within 3 std = 0.9973

For mu =-6 and sigma =5
Fraction within 1 std = 0.6827
Fraction within 1.96 std = 0.95
Fraction within 3 std = 0.9973

For mu =2 andsigma=6
Fraction within 1 std = 0.6827
Fraction within 1.96 std = 0.95
Fraction within 3 std = 0.9973

6.0002 LECTURE 7 10

Everybody Likes Normal Distributions

=Qccur a lot!

. . Figure 1 SAT Scores in 2010
=*Nice mathematical
p p 15000
3
=
2 10000 {
g
Number of Days fr
900
5000 A
800 ‘
700 i [l
600 g¢88 8““%%““%%2%%
SAT Scores
500
400
300 60
Women
” I | 5o
100
40
<4035_%_..-..--Ill'| Illll. _____ >1041%
-1035% -1.11% 321% 0029% +3.27% +7.16% +10.41% 30 Men
Percent Daily Change in Qil Price 50
10
0 bs y : - : : :
55 60 65 70 75 80 85
Height (inches)

6.0002 LECTURE 7 11

But Not All Distribution Are Normal

"Empirical works for normal distributions

=But are the outcomes of spins of a roulette wheel
normally distributed?

*No, they are uniformly distributed
o Each outcome is equally probable

=So, why does the empirical rule work here?

6.0002 LECTURE 7

12

Why Did the Empirical Rule Work?

. n = 4
"Because we are reasoning s Pl
. L 0.16 0.16
not about a single spin, _
0.12 0.12 1648
but about the meanofa o© 010
. 0.05 0.05
set of spins
0. 02 0.02
. . 0.00 123456 k 0.00 4 14 24 k
*And the central limit n=s
. p(k) p(k)
theorem applies o8 018
0.14 0.14
010 010 65 /648
0.08 0.08
0.05 0.05
0.04 0.04
0.02 0.02
0.00 0.00 5 17,18 30k
p(K) - o~
0.18 // RN
0.16 S o
0.14 7 o
0.12 7 W e
0.10 A NS
0.08 ey N
0.05 /f/}f/ \‘;\\ N\
0.04 Yy \:\,\\
0.02 /ji",,/ N
0.00 = ==

1011

6.0002 LECTURE 7 13

The Central Limit Theorem (CLT)

=Given a sufficiently large sample:
1) The means of the samples in a set of samples (the
sample means) will be approximately normally
distributed,

2) This normal distribution will have a mean close to
the mean of the population, and

3) The variance of the sample means will be close to
the variance of the population divided by the sample
Size.

6.0002 LECTURE 7 14

Checking CLT for a Continuous Die

def plotMeans(numDice, numRolls, numBins, legend, color, style):
means = []

for i in range(numRolls//numDice):
vals = 0
for j in range(numDice):
vals += 5*random.random()
means.append(vals/float(numDice))
pylab.hist(means, numBins, color = color, label = legend,
weights = pylab.array(len(means)*[1])/len(means),
hatch = style)
return getMeanAndStd(means)

mean, std = plotMeans(1, 1000000, 19, '1 die', 'b', '*')

print('Mean of rolling 1 die ="', str(mean) + ',', 'Std =', std)
mean, std = plotMeans(50, 1000000, 19, 'Mean of 50 dice', 'r', '//")
print('Mean of rolling 50 dice =', str(mean) + ',', 'Std =', std)

pylab.title('RolTing Continuous Dice')
pylab.xlabel('Value')
pylab.ylabel('Probability')
pylab.legend()

6.0002 LECTURE 7 15

Output

Mean of rolling 1 die = 2.49759575528, Std = 1.4439045633
Mean of rolling 50 dice = 2.49985051798, Std = 0.204887274645

Rolling Continuous Dice

0.16 | I

EEE 1 die
0.14 B Mean of 50 dice [
0.12+ |
0.10}+ |

Probability
o
o
co

Value

6.0002 LECTURE 7 16

Try It for Roulette

numTrials = 1000000
numSpins = 200
game = FairRoulette()

means = []
for 1 in range(numTrials):
means.append(findPocketReturn(game, 1, numSpins,
False)[0])

pylab.hist(means, bins = 19,
weights = [1/1len(means)]*len(means))
pylab.xlabel('Mean Return')
pylab.ylabel('Probability')
pylab.title('Expected Return Betting a Pocket 200 Times')

6.0002 LECTURE 7 17

Betting a Pocket in Fair Roulette

0.18

0.16

0.14

© O
-
o N

Probability
o
&

Expected Return Betting a Pocket 200 Times

-1.0 -0.5 00 05 1.0 15 2.0
Mean Return

6.0002 LECTURE 7

2.5

3.0

18

ssi282
Line

ssi282
Line

Moral

"|t doesn’t matter what the shape of the distribution of
values happens to be

5|f we are trying to estimate the mean of a population
using sufficiently large samples

=The CLT allows us to use the empirical rule when
computing confidence intervals

6.0002 LECTURE 7 19

Pi

circumference
diameter

-1 area=II*radius®

Rhind Papyrus

4*(8/9)? = 3.16

Image of the Rhind Papyrus is in the public domain. Source: |Wikimedia Commons.

6.0002 LECTURE 7

https://en.wikipedia.org/wiki/Rhind_Mathematical_Papyrus#/media/File:Rhind_Mathematical_Papyrus.jpg

~1100 Years Later

“And he made a molten sea, ten cubits
from the one brim to the other: it was
round all about, and his height was five
cubits: and a line of thirty cubits did

compass it round about.”
—1 Kings 7.23

~300 Years Later (Archimedes)

~2000 Years Later (Buffon-Laplace)

A, =2*%2=4
1 A =Tir’=T
needles in circle area of circle

needles in square area of square

1 1

_ area of square * needles in circle
area of circle =

needles in square

4 x needles in circle

area of circle = :
needles in square

6.0002 LECTURE 7 25

~200 Years Later

ir' il [

Crazy archer on closed course. Do not try ANYWHERE.

|https://www.youtube.com/watch?v=oYM6I\/|IjZSIY

6.0002 LECTURE 7

https://www.youtube.com/watch?v=oYM6MIjZ8IY

Very End of Video

6.0002 LECTURE 7 27

Simulating Buffon-Laplace Method

def throwNeedles(nhumNeedles):

inCircle = 0

for Needles 1n range(l, numNeedles + 1, 1):
X random. random()
y random. random()
1f (x*x + y*y)**0.5 <= 1.0:

inCircle += 1
return 4*(inCircle/float(nhumNeedles))

6.0002 LECTURE 7 28

Simulating Buffon-Laplace Method, cont.

def getEst(numNeedles, numTrials):
estimates = []
for t in range(numTrials):
p1Guess = throwNeedles(numNeedles)
estimates.append(piGuess)
sDev = stdDev(estimates)
curEst = sum(estimates)/len(estimates)

print('Est. = ' + str(curEst) +\
', Std. dev. = " + str(round(sDev, 6))\
+ ', Needles = ' + str(numNeedles))

return (curEst, sDev)

6.0002 LECTURE 7 29

Simulating Buffon-Laplace Method, cont.

def estPi(precision, numTrials):

numNeedles = 1000

sDev = precision

while sDev >= precision/2:
curEst, sDev = getEst(numNeedles,

numTrials)

numNeedles *= 2

return curkst

estP1(0.005, 100)

6.0002 LECTURE 7 30

Output

Est. = 3.1484400000000012, Std. dev. = 0.047886, Needles = 1000
Est. = 3.1391799999999987, Std. dev. = 0.035495, Needles = 2000
Est. = 3.1410799999999997, Std. dev. = 0.02713, Needles = 4000
Est. = 3.141435, Std. dev. = 0.016805, Needles = 8000

Est. = 3.141355, Std. dev. = 0.0137, Needles = 16000

Est. = 3.1413137500000006, Std. dev. = 0.008476, Needles = 32000
Est. = 3.141171874999999, Std. dev. = 0.007028, Needles = 64000
Est. = 3.1415896874999993, Std. dev. = 0.004035, Needles = 128000
Est. = 3.1417414062499995, Std. dev. = 0.003536, Needles = 256000
Est. = 3.14155671875, Std. dev. = 0.002101, Needles = 512000

6.0002 LECTURE 7 31

Being Right is Not Good Enough

=*Not sufficient to produce a good answer
*Need to have reason to believe that it is close to right

"|n this case, small standard deviation implies that we
are close to the true value of T

Right?

6.0002 LECTURE 7 32

Is it Correct to State

=95% of the time we run this simulation, we will
estimate that the value of pi is between
3.13743875875 and 3.145674678757?

=\With a probability of 0.95 the actual value of T is
between 3.13743875875 and 3.145674678757

"Both are factually correct

"But only one of these statement can be inferred from
our simulation

sstatiscally valid # true

6.0002 LECTURE 7 33

Introduce a Bug

def throwNeedles(nhumNeedles):

inCircle = 0

for Needles in range(l, numNeedles + 1, 1):
X = random.random()
y = random.random()
1f (x*x + y*y)**0.5 <= 1.0:

inCircle += 1
return 2*(inCircle/float(nhumNeedles))

6.0002 LECTURE 7 34

Generally Useful Technique

*To estimate the area of some region, R

o Pick an enclosing region, E, such that the area of E is easy
to calculate and R lies completely within E

o Pick a set of random points that lie within E
o Let F be the fraction of the points that fall within R
o Multiply the area of E by F

=\Way to estimate integrals

6.0002 LECTURE 7 35

Sin(x)

sin(x)

1.0

6.0002 LECTURE 7 36

Random Points

0. -
%.D 0.5 1.4 1.5 2.0 2.5 3.0

6.0002 LECTURE 7 37

MIT OpenCourseWare
https://ocw.mit.edu

6.0002 Introduction to Computational Thinking and Data Science
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

