Lecture 7: Confidence
Intervals




Assumptions Underlying Empirical Rule

*The mean estimation error is zero

=The distribution of the errors in the estimates is
normal (Gaussian)
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Generating Normally Distributed Data

dist, numSamples [], 1000000

for 1 in range(numSamples):
dist.append(random.gauss(0, 100))

——

weights = [1/numSamples]*len(dist)
v = pylab.hist(dist, bins = 100,
weights = [1/numSamples]*len(dist))

ylab.xlabel('x")
pylab.ylabel('Relative Frequency') ‘\\\\\\\\

print('Fraction within ~200 of mean =',
sum(v[0][30:70]))
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Output

Discrete
Approximation
to PDF

Fraction within ~200 of mean = 0.957147
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PDF’s (recapping)

=Distributions defined by probability density functions
(PDFs)

=Probability of a random variable lying between two
values

=Defines a curve where the values on the x-axis lie
between minimum and maximum value of the variable

"Area under curve between two points, is probability of
example falling within that range
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PDF for Normal Distribution

def gaussian(x, mu, sigma):
factorl = (1.0/(sigma*((2*pylab.pi)**0.5)))
factor2 = pylab.e**-(((x-mu)**2)/(2*sigma**2))
return factorl*factor?

xVals, yvals = [], [] 1 _(—p)?
. P(x) = * e 202

zu; flgma =0, 1 ( ) GVEE;
while x <= 4:

xVals.append(x)

yVals.append(gaussian(x, mu, sigma))

X += 0.05
pylab.plot(xVals, yVals)
pylab.title('Normal Distribution, mu = ' + str(mu)\

+ ', sigma = ' + str(sigma))
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Output

0.40_Normal Distribution, mu = 0, sigma =1
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Are values on y-axis
probabilities?

They are densities.
|.e., derivative of
cumulative
distribution
function.

Hence we use
integration to
interpret a PDF




A Digression

=SciPy library contains my useful mathematical
functions used by scientists and engineers

=scipy.integrate.quad has up to four arguments
° a function or method to be integrated
> a number representing the lower limit of the integration,

> a number representing the upper limit of the integration,
and

> an optional tuple supplying values for all arguments,
except the first, of the function to be integrated

=scipy.integrate.quad returns a tuple
o Approximation to result
o Estimate of absolute error
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Checking the Empirical Rule

import scipy.integrate €——
def gaussian(x, mu, sigma)

def checkEmpirical(numTrials):
for t in range(numTrials):
mu = random.randint(-10, 10)
sigma = random.randint(l, 10)
print('For mu =', mu, 'and sigma =', sigma)
for numStd in (1, 1.96, 3):
area = scipy.integrate.quad(gaussian,
mu-numStd*sigma,
mu+numStd*sigma,
(mu, sigma)) [0]
print(' Fraction within', numStd,
'std ="', round(area, 4))
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Results

For mu =9 andsigma=6
Fraction within 1 std = 0.6827
Fraction within 1.96 std = 0.95
Fraction within 3 std = 0.9973

For mu =-6 and sigma =5
Fraction within 1 std = 0.6827
Fraction within 1.96 std = 0.95
Fraction within 3 std = 0.9973

For mu =2 andsigma=6
Fraction within 1 std = 0.6827
Fraction within 1.96 std = 0.95
Fraction within 3 std = 0.9973
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Everybody Likes Normal Distributions

=Qccur a lot!

. . Figure 1 SAT Scores in 2010
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But Not All Distribution Are Normal

"Empirical works for normal distributions

=But are the outcomes of spins of a roulette wheel
normally distributed?

*No, they are uniformly distributed
o Each outcome is equally probable

=So, why does the empirical rule work here?

6.0002 LECTURE 7

12




Why Did the Empirical Rule Work?
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The Central Limit Theorem (CLT)

=Given a sufficiently large sample:
1) The means of the samples in a set of samples (the
sample means) will be approximately normally
distributed,

2) This normal distribution will have a mean close to
the mean of the population, and

3) The variance of the sample means will be close to
the variance of the population divided by the sample
Size.
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Checking CLT for a Continuous Die

def plotMeans(numDice, numRolls, numBins, legend, color, style):
means = []

for i in range(numRolls//numDice):
vals = 0
for j in range(numDice):
vals += 5*random.random()
means.append(vals/float(numDice))
pylab.hist(means, numBins, color = color, label = legend,
weights = pylab.array(len(means)*[1])/len(means),
hatch = style)
return getMeanAndStd(means)

mean, std = plotMeans(1, 1000000, 19, '1 die', 'b', '*')

print('Mean of rolling 1 die ="', str(mean) + ',', 'Std =', std)
mean, std = plotMeans(50, 1000000, 19, 'Mean of 50 dice', 'r', '//")
print('Mean of rolling 50 dice =', str(mean) + ',', 'Std =', std)

pylab.title('RolTing Continuous Dice')
pylab.xlabel('Value')
pylab.ylabel('Probability')
pylab.legend()
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Output

Mean of rolling 1 die = 2.49759575528, Std = 1.4439045633
Mean of rolling 50 dice = 2.49985051798, Std = 0.204887274645

Rolling Continuous Dice
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Try It for Roulette

numTrials = 1000000
numSpins = 200
game = FairRoulette()

means = []
for 1 in range(numTrials):
means.append(findPocketReturn(game, 1, numSpins,
False)[0])

pylab.hist(means, bins = 19,
weights = [1/1len(means)]*len(means))
pylab.xlabel('Mean Return')
pylab.ylabel('Probability')
pylab.title('Expected Return Betting a Pocket 200 Times')
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Betting a Pocket in Fair Roulette
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Moral

"|t doesn’t matter what the shape of the distribution of
values happens to be

5|f we are trying to estimate the mean of a population
using sufficiently large samples

=The CLT allows us to use the empirical rule when
computing confidence intervals
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Pi

circumference
diameter

-1 area=II*radius®




Rhind Papyrus

4*(8/9)? = 3.16

Image of the Rhind Papyrus is in the public domain. Source: |Wikimedia Commons.

6.0002 LECTURE 7



https://en.wikipedia.org/wiki/Rhind_Mathematical_Papyrus#/media/File:Rhind_Mathematical_Papyrus.jpg

~1100 Years Later

“And he made a molten sea, ten cubits
from the one brim to the other: it was
round all about, and his height was five
cubits: and a line of thirty cubits did

compass it round about.”
—1 Kings 7.23




~300 Years Later (Archimedes)




~2000 Years Later (Buffon-Laplace)

A, =2*%2=4
1 A =Tir’=T
needles in circle area of circle

needles in square  area of square

1 1

_ area of square * needles in circle
area of circle =

needles in square

4 x needles in circle

area of circle = :
needles in square
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~200 Years Later

ir' il [

Crazy archer on closed course. Do not try ANYWHERE.

|https://www.youtube.com/watch?v=oYM6I\/|IjZSIY
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https://www.youtube.com/watch?v=oYM6MIjZ8IY

Very End of Video
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Simulating Buffon-Laplace Method

def throwNeedles(nhumNeedles):

inCircle = 0

for Needles 1n range(l, numNeedles + 1, 1):
X random. random()
y random. random()
1f (x*x + y*y)**0.5 <= 1.0:

inCircle += 1
return 4*(inCircle/float(nhumNeedles))
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Simulating Buffon-Laplace Method, cont.

def getEst(numNeedles, numTrials):
estimates = []
for t in range(numTrials):
p1Guess = throwNeedles(numNeedles)
estimates.append(piGuess)
sDev = stdDev(estimates)
curEst = sum(estimates)/len(estimates)

print('Est. = ' + str(curEst) +\
', Std. dev. = " + str(round(sDev, 6))\
+ ', Needles = ' + str(numNeedles))

return (curEst, sDev)
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Simulating Buffon-Laplace Method, cont.

def estPi(precision, numTrials):

numNeedles = 1000

sDev = precision

while sDev >= precision/2:
curEst, sDev = getEst(numNeedles,

numTrials)

numNeedles *= 2

return curkst

estP1(0.005, 100)
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Output

Est. = 3.1484400000000012, Std. dev. = 0.047886, Needles = 1000
Est. = 3.1391799999999987, Std. dev. = 0.035495, Needles = 2000
Est. = 3.1410799999999997, Std. dev. = 0.02713, Needles = 4000
Est. = 3.141435, Std. dev. = 0.016805, Needles = 8000

Est. = 3.141355, Std. dev. = 0.0137, Needles = 16000

Est. = 3.1413137500000006, Std. dev. = 0.008476, Needles = 32000
Est. = 3.141171874999999, Std. dev. = 0.007028, Needles = 64000
Est. = 3.1415896874999993, Std. dev. = 0.004035, Needles = 128000
Est. = 3.1417414062499995, Std. dev. = 0.003536, Needles = 256000
Est. = 3.14155671875, Std. dev. = 0.002101, Needles = 512000
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Being Right is Not Good Enough

=*Not sufficient to produce a good answer
*Need to have reason to believe that it is close to right

"|n this case, small standard deviation implies that we
are close to the true value of T

Right?
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Is it Correct to State

=95% of the time we run this simulation, we will
estimate that the value of pi is between
3.13743875875 and 3.145674678757?

=\With a probability of 0.95 the actual value of T is
between 3.13743875875 and 3.145674678757

"Both are factually correct

"But only one of these statement can be inferred from
our simulation

sstatiscally valid # true
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Introduce a Bug

def throwNeedles(nhumNeedles):

inCircle = 0

for Needles in range(l, numNeedles + 1, 1):
X = random.random()
y = random.random()
1f (x*x + y*y)**0.5 <= 1.0:

inCircle += 1
return 2*(inCircle/float(nhumNeedles))
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Generally Useful Technique

*To estimate the area of some region, R

o Pick an enclosing region, E, such that the area of E is easy
to calculate and R lies completely within E

o Pick a set of random points that lie within E
o Let F be the fraction of the points that fall within R
o Multiply the area of E by F

=\Way to estimate integrals
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Sin(x)

sin(x)

1.0
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Random Points
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