
Op#miza#on Problems,
John Gu7ag

MIT Department of Electr ical Engineering and
Computer Science

6.0002	LECTURE	2	 1	

§ Chapter	13	

Relevant Reading for Today’s Lecture

6.0002	LECTURE	2	 2	

The Pros and Cons of Greedy

§ Easy	to	implement	

§ Computa<onally	efficient	

§ But	does	not	always	yield	the	best	solu<on	
◦ Don’t	even	know	how	good	the	approxima<on	is	

6.0002	LECTURE	2	 3	

Ques<on	1	

§ 1.	Enumerate	all	possible	combina<ons	of	items.	

§ 2.	Remove	all	of	the	combina<ons	whose	total	units	
exceeds	the	allowed	weight.	

§ 3.	From	the	remaining	combina<ons	choose	any	one	
whose	value	is	the	largest.	

Brute Force Algorithm

6.0002	LECTURE	2	 4	

§ The	tree	is	built	top	down	star<ng	with	the	root		
§ The	first	element	is	selected	from	the	s<ll	to	be	
considered	items	
◦  If	there	is	room	for	that	item	in	the	knapsack,	a	node	is	
constructed	that	reflects	the	consequence	of	choosing	to	
take	that	item.		By	conven<on,	we	draw	that	as	the	leS	
child	

◦ We	also	explore	the	consequences	of	not	taking	that	
item.	This	is	the	right	child	

§ The	process	is	then	applied	recursively	to	non-leaf	
children	
§ Finally,	chose	a	node	with	the	highest	value	that	meets	
constraints	

Search Tree Implementa#on

6.0002	LECTURE	2	 5	

A Search Tree Enumerates Possibili#es

6.0002	LECTURE	2	

6	

Take	 Don’tTake	

LeS-first,	depth-first	
enumera<on	

Val	=	170	
Cal	=	766	

Val	=	120	
Cal	=	766	

Val	=	140	
Cal	=	508	

Val	=	90	
Cal	=	145	

Val	=	80	
Cal	=	612	

Val	=	30	
Cal	=	258	

Val	=	50	
Cal	=	354	

Val	=	0	
Cal	=	0	

6.0002	LECTURE	2	 7	

Image © source unknown. All rights reserved. This content is excluded from our Creative
Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use.

https://ocw.mit.edu/help/faq-fair-use

§ Time	based	on	number	of	nodes	generated	

§ Number	of	levels	is	number	of	items	to	choose	from	

§ Number	of	nodes	at	level	i	is	2i	

§ So,	if	there	are	n	items	the	number	of	nodes	is	
◦ ∑𝑖=0↑𝑖=𝑛▒2↑𝑖  	
◦  I.e.,	O(2↑𝑛+1 )	

§ An	obvious	op<miza<on:	don’t	explore	parts	of	tree	
that	violate	constraint	(e.g.,	too	many	calories)	
◦ Doesn’t	change	complexity	

§ Does	this	mean	that	brute	force	is	never	useful?	
◦ Let’s	give	it	a	try	

Computa#onal Complexity

6.0002	LECTURE	2	 8	

Header for Decision Tree Implementa#on

6.0002	LECTURE	2	 9	

def maxVal(toConsider, avail):
 """Assumes toConsider a list of items,
 avail a weight
 Returns a tuple of the total value of a
 solution to 0/1 knapsack problem and
 the items of that solution""”

toConsider. Those items that nodes higher up in the tree
(corresponding to earlier calls in the recursive call stack)
have not yet considered

avail. The amount of space still available		

Body of maxVal (without comments)

6.0002	LECTURE	2	 10	

if toConsider == [] or avail == 0:
 result = (0, ())
 elif toConsider[0].getUnits() > avail:
 result = maxVal(toConsider[1:], avail)
 else:
 nextItem = toConsider[0]
 withVal, withToTake = maxVal(toConsider[1:],
 avail - nextItem.getUnits())
 withVal += nextItem.getValue()

 withoutVal, withoutToTake = maxVal(toConsider[1:], avail
f withVal > withoutVal:
 result = (withVal, withToTake + (nextItem,))
 else:
 result = (withoutVal, withoutToTake)
eturn result

oes	not	actually	build	search	tree	

)
 i

 r

D
Local	variable	result	records	best	solu<on	found	so	far	

§ With	calorie	budget	of	750	calories,	chose	an	op<mal	
set	of	foods	from	the	menu	

Try on Example from Lecture 1

6.0002	LECTURE	2	 11	

Food	 wine	 beer	 pizza	 burger	 fries	 coke	 apple	 donut	

Value	 89	 90	 30	 50	 90	 79	 90	 10	

calories	 123	 154	 258	 354	 365	 150	 95	 195	

§ Gave	us	a	befer	answer	
§ Finished	quickly	
§ But	28	is	not	a	large	number		
◦ We	should	look	at	what	happens	when	we	have	a	more	
extensive	menu	to	choose	from	

Search Tree Worked Great

6.0002	LECTURE	2	 12	

Code to Try Larger Examples

6.0002	LECTURE	2	 13	

import random

def buildLargeMenu(numItems, maxVal, maxCost):
 items = []
 for i in range(numItems):

items.append(Food(str(i),
random.randint(1, maxVal),
random.randint(1, maxCost)))

 return items

for numItems in (5,10,15,20,25,30,35,40,45,50,55,60):
 items = buildLargeMenu(numItems, 90, 250)
 testMaxVal(items, 750, False)

§ In	theory,	yes	
§ In	prac<ce,	no!	
§ Dynamic	programming	to	the	rescue	

Is It Hopeless?

6.0002	LECTURE	2	 14	

Some<mes	a	name	is	just	a	name	
	
“The	1950s	were	not	good	years	for	mathema<cal	
research…	I	felt	I	had	to	do	something	to	shield	Wilson	
and	the	Air	Force	from	the	fact	that	I	was	really	doing	
mathema<cs...	What	<tle,	what	name,	could	I	
choose?	...	It's	impossible	to	use	the	word	dynamic	in	a	
pejora<ve	sense.	Try	thinking	of	some	combina<on	that	
will	possibly	give	it	a	pejora<ve	meaning.	It's	
impossible.	Thus,	I	thought	dynamic	programming	was	
a	good	name.	It	was	something	not	even	a	
Congressman	could	object	to.	So	I	used	it	as	an	
umbrella	for	my	ac<vi<es.	
																	--	Richard	Bellman	

Dynamic Programming?

6.0002	LECTURE	2	 15	

Recursive Implementa#on of Fibonnaci

6.0002	LECTURE	2	 16	

def fib(n):
 if n == 0 or n == 1:

return 1
 else:

return fib(n - 1) + fib(n - 2)

fib(120) = 8,670,007,398,507,948,658,051,921
	

Call Tree for Recursive Fibonnaci(6) = 13

6.0002	LECTURE	2	 17	

fib(6)	

fib(5)	

fib(4)	

fib(3)	

fib(2)	

fib(1)	 fib(0)	

fib(1)	

fib(2)	

fib(1)	 fib(0)	

fib(3)	

fib(2)	

fib(1)	 fib(0)	

fib(1)	

fib(4)	

fib(3)	

fib(2)	

fib(1)	 fib(0)	

fib(1)	

fib(2)	

fib(1)	 fib(0)	

§ Trade	a	<me	for	space	

§ Create	a	table	to	record	what	we’ve	done	
◦ Before	compu<ng	fib(x),	check	if	value	of	fib(x)	
already	stored	in	the	table	
◦ If	so,	look	it	up	
◦ If	not,	compute	it	and	then	add	it	to	table	

◦ Called	memoiza<on	

Clearly a Bad Idea to Repeat Work

6.0002	LECTURE	2	 18	

Using a Memo to Compute Fibonnaci

6.0002	LECTURE	2	 19	

def fastFib(n, memo = {}):
 """Assumes n is an int >= 0, memo used only by

recursive calls
Returns Fibonacci of n"""

 if n == 0 or n == 1:
return 1

 try:
return memo[n]

 except KeyError:
result = fastFib(n-1, memo) +\

fastFib(n-2, memo)
memo[n] = result
return result

§ Op<mal	substructure:	a	globally	op<mal	solu<on	can	
be	found	by	combining	op<mal	solu<ons	to	local	
subproblems	
◦ For	x	>	1,	fib(x)	=	fib(x	-	1)	+	fib(x	–	2)	

§ Overlapping	subproblems:	finding	an	op<mal	solu<on	
involves	solving	the	same	problem	mul<ple	<mes	
◦ Compute	fib(x)	or	many	<mes	

When Does It Work?

6.0002	LECTURE	2	 20	

§ Do	these	condi<ons	hold?	

What About 0/1 Knapsack Problem?

6.0002	LECTURE	2	 21	

Ques<ons	2	and	3	

Search Tree

6.0002	LECTURE	2	

22	

Take	 Don’tTake	

Val	=	170	
Cal	=	766	

Val	=	120	
Cal	=	766	

Val	=	140	
Cal	=	508	

Val	=	90	
Cal	=	145	

Val	=	80	
Cal	=	612	

Val	=	30	
Cal	=	258	

Val	=	50	
Cal	=	354	

Val	=	0	
Cal	=	0	

Op<mal	substructure?	
Overlapping	subproblems?	

A Different Menu

6.0002	LECTURE	2	

23	

Take	 Don’t	Take	

Need Not Have Copies of Items

6.0002	LECTURE	2	 24	

Item	 Value	 Calories	
a	 6	 3	
b	 7	 3	
c	 8	 2	
d	 9	 5	

§ Each	node	=	<taken,	leS,	value,	remaining	calories>	

Search Tree

6.0002	LECTURE	2	 25	

§ Given	remaining	weight,	maximize	value	by	choosing	
among	remaining	items	

§ Set	of	previously	chosen	items,	or	even	value	of	that	
set,	doesn’t	mafer!	

What Problem is Solved at Each Node?

6.0002	LECTURE	2	 26	

Overlapping Subproblems

6.0002	LECTURE	2	 27	

§ Add	memo	as	a	third	argument	
◦ def fastMaxVal(toConsider, avail, memo = {}):

§ Key	of	memo	is	a	tuple	
◦ (items	leS	to	be	considered,	available	weight)	
◦ Items	leS	to	be	considered	represented	by	
len(toConsider)

§ First	thing	body	of	func<on	does	is	check	whether	the	
op<mal	choice	of	items	given	the	the	available	weight	
is	already	in	the	memo	

§ Last	thing	body	of	func<on	does	is	update	the	memo	

Modify maxVal to Use a Memo

6.0002	LECTURE	2	 28	

Performance

6.0002	LECTURE	2	 29	

len(items)	 2**len(items)	 Number	of	calls	

2	 4	 7	

4	 16	 25	

8	 256	 427	

16	 65,536	 5,191	

32	 4,294,967,296	 22,701	

64	 18,446,744,073,709 42,569	
,551,616	

128	 Big	 83,319	

256	 Really	Big	 176,614	

512	 Ridiculously	big	 351,230	

1024	 Absolutely	huge	 703,802	

§ Problem	is	exponen<al	

§ Have	we	overturned	the	laws	of	the	universe?	
§ Is	dynamic	programming	a	miracle?	

§ No,	but	computa<onal	complexity	can	be	subtle	

§ Running	<me	of	fastMaxVal	is	governed	by	number	of	
dis<nct	pairs,	<toConsider, avail>	
◦ Number	of	possible	values	of	toConsider	bounded	
by	len(items)

◦ Possible	values	of	avail	a	bit	harder	to	characterize	
◦ Bounded	by	number	of	dis<nct	sums	of	weights	

◦ Covered	in	more	detail	in	assigned	reading	

How Can This Be?

6.0002	LECTURE	2	 30	

§ Many	problems	of	prac<cal	importance	can	be	
formulated	as	op<miza<on	problems	
§ Greedy	algorithms	oSen	provide	adequate	(though	not	
necessarily	op<mal)	solu<ons	
§ Finding	an	op<mal	solu<on	is	usually	exponen<ally	
hard	
§ But	dynamic	programming	oSen	yields	good	
performance	for	a	subclass	of	op<miza<on	problems—
those	with	op<mal	substructure	and	overlapping	
subproblems	
◦ Solu<on	always	correct	
◦ Fast	under	the	right	circumstances	

Summary of Lectures 1-2

6.0002	LECTURE	2	 31	

The “Roll-over” Op#miza#on Problem

6.0002	LECTURE	2	 32	

Score	=	((60	–	(a+b+c+d+e))*F	+	a*ps1	+	b*ps2	+	c*ps3	+	d*ps4	+	e*ps5	

Objec<ve:	
	Given	values	for	F,	ps1,	ps2,	ps3,	ps4,	ps5	
	Find	values	for	a,	b,	c,	d,	e	that	maximize	score	

Constraints:	
								a,	b,	c,	d,	e	are	each	10	or	0	

	a	+	b	+	c	+	d	+	e	≥	20	

MIT OpenCourseWare
https://ocw.mit.edu

6.0002 Introduction to Computational Thinking and Data Science
Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

https://ocw.mit.edu/terms
https://ocw.mit.edu

