Lecture 4: Stochastic Thinking and Random Walks

Relevant Reading

- Pages 235-238
-Chapter 14

The World is Hard to Understand

-Uncertainty is uncomfortable
-But certainty is usually unjustified

Newtonian Mechanics

-Every effect has a cause
-The world can be understood causally

Copenhagen Doctrine

-Copenhagen Doctrine (Bohr and Heisenberg) of causal nondeterminism

- At its most fundamental level, the behavior of the physical world cannot be predicted.
- Fine to make statements of the form " x is highly likely to
- occur," but not of the form "x is certain to occur."
-Einstein and Schrödinger objected
- "God does not play dice." -- Albert Einstein

Does It Really Matter

Did the flips yield
2 heads
2 tails
1 head and 1 tail?

The Moral

-The world may or may not be inherently unpredictable
-But our lack of knowledge does not allow us to make accurate predictions
-Therefore we might as well treat the world as inherently unpredictable
-Predictive nondeterminism

Stochastic Processes

-An ongoing process where the next state might depend on both the previous states and some random element
def rol1Die():
""" returns an int between 1 and 6"""
def rol1Die():
""" returns a random7y chosen int between 1 and 6"""

Implementing a Random Process

import random
def rollDie():
"""returns a random int between 1 and 6""" return random.choice([1,2,3,4,5,6])

```
def testRoll(n = 10):
    result = ''
    for i in range(n):
        result = result + str(rol1Die())
    print(result)
```


Probability of Various Results

-Consider testRol1(5)
-How probable is the output 11111?

Probability Is About Counting

-Count the number of possible events
-Count the number of events that have the property of interest
-Divide one by the other
-Probability of 11111 ?

- 11111, 11112, 11113, ..., 11121, 11122, ..., 66666
- 1/(6**5)
$\circ \sim 0.0001286$

Three Basic Facts About Probability

-Probabilities are always in the range 0 to 1.0 if impossible, and 1 if guaranteed.
-If the probability of an event occurring is p, the probability of it not occurring must be
-When events are independent of each other, the probability of all of the events occurring is equal to a product of the probabilities of each of the events occurring.

Independence

-Two events are independent if the outcome of one event has no influence on the outcome of the other

- Independence should not be taken for granted

Will One of the Patriots and Broncos Lose?

-Patriots have winning percentage of $7 / 8$, Broncos of 6/8
-Probability of both winning next Sunday is $7 / 8$ * 6/8 = 42/64
-Probability of at least one losing is $1-42 / 64=22 / 64$
-What about Sunday, December 18

- Outcomes are not independent
- Probability of one of them losing is much closer to 1 than to 22/64!

A Simulation of Die Rolling

def runSim(goal, numTrials, txt):
total $=0$
for in range(numTrials): result = ''
for j in range(len(goa1)): result += str(rol1Die()) if result == goal: total $+=1$ print('Actual probability of', txt, '=', round(1/(6**1en(goal)), 8)) estProbability $=$ round(total/numTrials, 8) print('Estimated Probability of', txt, '=', round(estProbability, 8))
runSim('11111', 1000, '11111')

Output of Simulation

-Actual probability $=0.0001286$
-Estimated Probability $=0.0$
-Actual probability $=0.0001286$
-Estimated Probability $=0.0$
-How did I know that this is what would get printed?
-Why did simulation give me the wrong answer?

> Let's try 1,000,000 trials

Morals

- Moral 1: It takes a lot of trials to get a good estimate of the frequency of occurrence of a rare event. We'll talk lots more in later lectures about how to know when we have enough trials.
- Moral 2: One should not confuse the sample probability with the actual probability
-Moral 3: There was really no need to do this by simulation, since there is a perfectly good closed form answer. We will see many examples where this is not true.
-But simulations are often useful.

The Birthday Problem

-What's the probability of at least two people in a group having the same birthday
-If there are 367 people in the group?
-What about smaller numbers?
-If we assume that each birthdate is equally likely
-1- $\frac{366!}{366^{N_{*}}(366-N)!}$
-Without this assumption, VERY complicated

Approximating Using a Simulation

def sameDate(numPeople, numSame): possibleDates $=$ range(366) birthdays $=$ [0]*366 for p in range(numPeople): birthDate = random.choice(possibleDates) birthdays[birthDate] += 1
return max(birthdays) >= numSame

Approximating Using a Simulation

```
def birthdayProb(numPeople, numSame, numTrials):
    numHits = 0
    for t in range(numTrials):
        if sameDate(numPeople, numSame):
        numHits += 1
    return numHits/numTrials
for numPeople in [10, 20, 40, 100]:
    print('For', numPeople,
    'est. prob. of a shared birthday is',
        birthdayProb(numPeople, 2, 10000))
    numerator = math.factorial(366)
    denom = (366**numPeop1e)*math.factoria1(366-numPeop1e)
    print('Actual prob. for N = 100 =',
        1 - numerator/denom)
```

Suppose we want the probability of 3 people sharing

Why 3 Is Much Harder Mathematically

-For 2 the complementary problem is "all birthdays distinct"
-For 3 people, the complementary problem is a complicated disjunct

- All birthdays distinct or
- One pair and rest distinct or
- Two pairs and rest distinct or
${ }^{\circ}$...
-But changing the simulation is dead easy

But All Dates Are Not Equally Likely

Are you exceptional?

Chart © Matt Stiles / The Daily Viz. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Another Win for Simulation

-Adjusting analytic model a pain
-Adjusting simulation model easy
def sameDate(numPeople, numSame): possibleDates $=4 * 1 i s t(r a n g e(0,57))+[58] \backslash$ $+4 * 1 i s t(r a n g e(59,366)) \backslash$
$+4 * 1 i s t(r a n g e(180,270))$
birthdays $=$ [0]*366
for p in range(numPeople):
birthDate = random.choice(possibleDates)
birthdays[birthDate] += 1
return max(birthdays) >= numSame

Simulation Models

-A description of computations that provide useful information about the possible behaviors of the system being modeled
-Descriptive, not prescriptive
-Only an approximation to reality
-"All models are wrong, but some are useful." - George Box

Simulations Are Used a Lot

-To model systems that are mathematically intractable
-To extract useful intermediate results

- Lend themselves to development by successive refinement and "what if" questions
-Start by simulating random walks

Why Random Walks?

-Random walks are important in many domains

- Understanding the stock market (maybe)
- Modeling diffusion processes
- Etc.
-Good illustration of how to use simulations to understand things
-Excuse to cover some important programming topics
- Practice with classes
- More about plotting

Brownian Motion Is a Random Walk

Images of Robert Brown and Albert Einstein are in the public domain. Image of Louis Bachelier © unknown. All rights reserved. This content is excluded from our Creative Commons license. For more information, see https://ocw.mit.edu/help/faq-fair-use/.

Drunkard's Walk

One Possible First Step

			霜易				

Another Possible First Step

Yet Another Possible First Step

Last Possible First Step

Possible Distances After Two Steps

Expected Distance After 100,000 Steps?

-Need a different approach to problem
-Will use simulation
-But not until the next lecture

MIT OpenCourseWare
https://ocw.mit.edu
6.0002 Introduction to Computational Thinking and Data Science Fall 2016

For information about citing these materials or our Terms of Use, visit: https://ocw.mit.edu/terms.

