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Remember our goal

="\Want to find a model that fits experimental data well

*Model will then allow us to explain phenomena, and to
make predictions about behavior in new settings

=*Know that data is unlikely to be perfect, so have to
account for uncertainty in measurements or
observations

sSometimes have theoretical knowledge of structure of
model, but not always

° |n latter case, want to try to find best model from class of
options



Solving for Least Squares (Recap)

len(observed )-1
(observed|i] - predicted|i])’
i=0
=Given observed data, and model prediction of expected
values, can measure goodness of fit of model to

observation using sum-of-squared-differences (or mean-
squared-error)

="Want to find best model for predicting values

"Predicted values often come from mathematical
expression, with set of parameters that can vary — typically
a polynomial expression

=Use linear regression to find best model that minimizes
difference — for polynomial model, this include
coefficients, and may include order of polynomial



Solving for Least Squares (Recap)

len(observed )-1
(observed|i] - predicted|[i])’
i=0
=Simple example:

o Use a degree-one polynomial, y = ax+b, as model of our
data (we want best fitting line)

"Find values of a and b such that when we use the
polynomial to predict y values for all of the x values in
our experiment, the squared difference of these values
and the corresponding observed values is minimized

"A linear regression problem
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Finding the best curve (simplest case)

The set of all possible lines
can be represented by a
point in a-b space

Imagine a surface in this
space, where height of the
surface is the value of the
objective function

Starting at any point on the
surface, walk “downhill”,
until you reach the “bottom”
Corresponding point is best
line to fit to data

Can generalize to higher
order models
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Another Experiment (Recap)
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Fit a Line

modell = pylab.polyfit(xvVals, yVals, 1)
pylab.plot(xVals, pylab.polyval(modell, xVals),
'r--", label = ’Linear Model")

sRemember that pylab.polyfit will find parameters of
best fitting polynomial of described order

° In this case (with argument n = 1), find the values of a and b,
such that y = ax + b best matches the observed yVals

"Remember that pylab.polyval will generate
predicted yVals given parameters of model
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Fit a Line
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Let’s Try a Higher-degree Model

model2 = pylab.polyfit(xVals, yVals,
pylab.plot(xVals, pylab.polyval(modelZ, xVals),
'r--', label = "Quadratic Model')
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Quadratic Appears to be a Better Fit
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Can We Get a Tighter Fit?

"What if we try fitting higher order polynomials to the
data?

o Does this give us a better fit?

*How would we measure that?

° In absence of other information (e.g., theoretical insights
into order of model), R? (coefficient of determination)
gives us decent measure of the tightness of the model fit

o In principle, a model with a higher R? value is a “better”
fit

P2 —1_ >i(¥i — Di)*<«— Error in estimates

Y, are measured values
P. are predicted values
u is mean of measured values

(Vi — W% e— Variability in
measured data



Can We Get a Tighter Fit?
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Why We Build Models

" ooks like an order 16 fit is really good — so should we
just use this as our model?

> To answer, need to ask — why build models in first place?

"Help us understand process that generated the data
o E.g., the properties of a particular linear spring

"Help us make predictions about out-of-sample data

o E.g., predict the displacement of a spring when a force is
applied to it

o E.g., predict the effect of treatment on a patient
o E.g., predict the outcome of an election

="A good model helps us do both of these things



Motivation for Mystery Data — Parabola

"Trajectory of a particle under the influence of a
uniform gravitational field (e.g. Halley’s Comet)

"Position of center of mass of a football pass
"Design of a load-bearing arch et

Images of particle trajectory, load-bearing arch, football pass center of mass diagram © sources unknown. All rights reserved.
This content is excluded from out Creative Commons license. For more information, see |[https://ocw.mit.edu/help/faqg-fair-use/.
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How Mystery Data Was Generated

def genNoisyParabolicData(a, b, c, xVals, fName):
yVals = []
for x in xVals:

theoreticalVal = a*x**2 + b*x +
yVa1s.append(theoretica1Va1-szgz%mhgauss(o, 350)
f = open(fName, 'w")
f.write('x y\n')
for 1 1n range(len(yVals)):
f.write(str(yvVals[i]) + ' ' + str(xVals[i]) + "\n")
f.close()

#parameters for generating data

xVals = range(-10, 11, 1)

a, b, c=3, 0, 0

genNoisyParabolicData(a, b, c, xVals, ’Mystery Data.txt")

If data was generated by quadratic, why was 16t
order polynomial the “best” fit?
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Let’s Look at Two Data Sets

degrees = (2, 4, 8, 16)

random.seed(0)
xValsl, yValsl = getData('Dataset 1.txt")

modelsl =xVa'Isl, yValsl, degrees)
mo s1, degrees, xValsl, yValsl,

'DataSet 1.txt')

pylab.figure()
xVals2, yVals2 = getData('Dataset 2.txt')

models?2 =xVa'IsZ, yVals2, degrees)
mode s2, degrees, xVals2, yvVals2,

'DataSet 2.txt')
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Fits for Dataset 1
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Fits for Dataset 2
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Hence Degree 16 Is Tightest Fit

=“Best” fitting model is still order 16 polynomial for both
data sets, but we know data was generated using an order
2 polynomial?

"What we are seeing comes from training error

> How well the model performs on the data from which it was
learned

o Small training error a necessary condition for a great model,
but not a sufficient one

*We want model to work well on other data generated by
the same process

o Measurements for other weights on the spring
o Positions of comets under different forces
o Voters other than those surveyed

"|n other words, the model needs to generalize



Cross Validate

"Generate models using one dataset, and then test
them on another dataset

o Use models for Dataset 1 to predict points for Dataset 2
o Use models for Dataset 2 to predict points for Dataset 1

"Expect testing error to be larger than training error

"A better indication of generalizability than training
error
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Test Code

pylab.figure()

testFits(mode1i:) degrees, xVa1£:) yVa1£:)
'DataSet 2/Model 1')

pylab.figure()

testFits(mode]i:) degrees, xVa1i:) yVa1{:)
'DataSet 1/Model 2')
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Train on Dataset 1, Test on Dataset 2
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Train on Dataset 2, Test on Dataset 1

400 DataSet }/Model 2

Data

@
== Fit of degree 2 = 0.83531
300 N == Fit of degree 43 = 0.8394
=== Fit of degree 8, R2 = 0.79606

Fit of degree 16, R2 = 0.64062
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Cross Validation

=Now can see that based on R2 numbers, best model is

more likely to be 2"¥ order or 4t order polynomial (we

know it is actually 2"¥ order, and difference in R? values
is pretty small), but certainly not 16 order

sExample of over fitting to the data

=Can see that if we only fit model to training data, we
may not detect that model is too complex; but training
on one data set, then testing on a second helps expose
this problem



Training and Testing Errors
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Increasing the Complexity

*"Why do we get a “better” fit on training data with
higher order model, but then do less well on handling
new data?

*\What happens when we increase order of polynomial
during training?
o Can we get a worse fit to training data?

"|f extra term is useless, coefficient will merely be zero

"But if data is noisy, can fit the noise rather than the
underlying pattern in the data

> May lead to a “better” R? value, but not really a “better”
fit



Fitting a Quadratic to a Perfect Line

xVals = (0,1,2,3)
yVals = xVals
pylab.plot(xVals, yVals, label = "Actual values")
.polyrtit(xvals, yvals,
round(a, 4), 'b ="', round(b, 4),
round(c,

, label ='"Predictive values")

pylab.plot(xVals, estYVals, 'r--

print('R-squared = ', rSquared(yVals, estYVals))
=" | yoax+bxec
‘ y=0x*+1x+0
y | y =X
R-squared = 1.0

! ! ! ! !
0'%.0 0.5 1.0 1.5 2.0 2.5 3.0
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Predict Another Point Using Same Model
s s @

pylab.plot(xVals, yVals, label = "Actual values")
estYVals = pylab.polyval((a,b,c), xVals)

pylab.plot(xVals, estYvVals, 'r--', label = 'Predictive values')
print('R-squared = ', rSquared(yVals, estYVals))

20 T T T
= Actual values
= = = Predictive values

15 .

10 -

R-squared = 1.0

0 5 10 15 20
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Simulate a Small Measurement Error

xVals = (0,1,2,

yVals = (0,1,2<fi::>

pylab.plot(xVals;~yVals, label = "Actual values")
model = pylab.polyfit(xVals, yVals, 2)

print(model)
estYVals = pylab.polyval (model, xVals)
pylab.plot(xVals, estYVals, 'r--', label = 'Predicted values")
print('R-squared = ', rSquared(yVals, estYVals))
3.5 : :
=== Actual values
30" Predicted values . y - axz + bX + C
2.5+
y =.025x% + .955x + .005
1.5+ |
| R-squared = 0.9994
0.5+

! ! ! ! !
0'%.0 0.5 1.0 1.5 2.0 2.5 3.0
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Predict Another Point Using Same Model

xVals = xVals +

yVals = xVals

estYVals = pylab.polyval(model, xVals)
rSquared(yVals, estYVals))

print('R-squared
pylab.figure()

pylab.plot(xVals, estYVals)

30 I
=== Actual values
= = = Predicted values
251
20
15+
*
o2
10+ g
&
.0
'0
51 g
0 |
0 5
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Suppose We Had Used a First-degree Fit

*model = pylab.polyfit(xVals, yVals,1)

25

|
= Actual values
= = Predicted values
k|

20

‘O

R-squared = 0.9988

0 5 10 15 20
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30

25

20

15

10

Comparing first and second degree fits

"Predictive ability of first order fit much better than

second order fit

Degree 2 polynomial

= Actual values
= = Predicted values

25

Degree 1 polynomial

7] 20+

15

= Actual values
= = Predicted values
|

“‘
g

20 0
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The Take Home Message

"Choosing an overly-complex model leads to overfitting
to the training data

"Increases the risk of a model that works poorly on data
not included in the training set

*On the other hand choosing an insufficiently complex
model has other problems

> As we saw when we fit a line to data that was basically
parabolic

o “Everything should be made as simple as possible, but
not simpler” — Albert Einstein
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Balancing Fit with Complexity

"|In absence of theory predicting order of model, can

engage in a search process
° Fit a low order model to training data

o Test on hew data and record R? value

° Increase order of model and repeat

o Continue until fit on test data begins to decline

350

300 |

250 %

200

150+

100+

50

DataSet 1.txt

T
® Data
== Fit of degree 2, R2 = 0.86088
= Fit of degree 4, R2 = 0.87628
=== Fit of degree 8, R2 = 0.89929
= Fit of degree 16, R2 = 0.99615

400

300

200+

100+

oL

DataSet 2/Model 1

T
® Data
== Fit of degree 2, R2 = 0.86721
= Fit of degree 4, R2 = 0.86917
=== Fit of degree 8, R2 = 0.83409
= Fit of degree 16, R2 = 0.69967

—-100
-10
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Returning to Where We Started

Measured Displacement of Sprin P
g l =P l PTRd Quadratic fit tighter

@® Measured points
= | inear fit, r**2 = 0.88151
= = = Quadratic fit, r¥*2 = 0.95416

o
8]
I

But remember Hooke

Unless we believe
theory is wrong, that
should guide us

Distance (meters)
7
I

0.2+
Gl .4.6 - | Model holds until

o reach elastic limit of
005 2 2 6 8 10 spring

|[Force| (Newtons)

Should probably fit different models to different segments of data

Can visualize as search process — find best place to break into two
parts, such that both linear segments have high R? fits
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Suppose We Don’t Have a Solid Theory

=Use cross-validation results to guide the choice of
model complexity

=|f dataset small, use leave-one-out cross validation

*|f dataset large enough, use k-fold cross validation or
repeated-random-sampling validation
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Leave-one-out Cross Validation

Let D be the original data set

testResults = []

for 1 1in range(len(D)):
training = D[:].pop(1)
model = buildModel(training)
testResults.append(test(model, D[1]))

Average testResults

k-fold very similar
Applies when we have large amount of data

D partitioned into k equal size sets
Model trained on k-1 sets, and tested on remaining set
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Repeated Random Sampling

Let D be the original data set
n be the number of random samples
usually n between 20% and 50%
k be number of trials

testResults = []
for 1 1n range(k)
randomly select n elements for testSet,
keep rest for training
model = buildModel(training)
testResults.append(test(model, testSet))

Average testResults
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An Example, Temperature By Year

=Task: Model how the mean daily high temperature in
the U.S. varied from 1961 through 2015

"Get means for each year and plot them

sRandomly divide data in half n times
o For each dimensionality to be tried

> Train on one half of data
o Test on other half
o Record r-squared on test data

"Report mean r-squared for each dimensionality



A Boring Class

class tempDatum(object):
def _1nit__(self, s):
info = s.split(', ")
self.high = float(info[1l])
self.year = int(info[2][0:4])
def getHigh(self):
return self.high
def getYear(self):
return self.year
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Read Data

def getTempData():

inFile = open('temperatures.csv’')
data = []

for 1 in inFile:

data.append(tempDatum(1))
return data
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Get Means

def getYearlyMeans(data):

years = {}
for d in data:
try:

years[d.getYear()].append(d.getHigh())
except:
years[d.getYear()] = [d.getHigh()]
for y 1n years:
years[ly] = sum(years[y])/len(years[y])
return years
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Get and Plot Data

data = getTempData()

years =

getYearlyMeans(data)

xVals, yVals = []1, []
for e 1n years:

xVal
yVa

pylab.p]
pylab.x

pylab.y]

s.append(e)
s.append(years[e])
ot(xVals, yVals)

abel ('Year")

abel ('Mean Daily High (C)")

pylab.title('Select U.S. Cities")
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The Whole Data Set

18.0

17.5

=
~J
o

Mean Daily High (C)
o o
o Ln

155

15f%

Select U.S. Cities

60

|
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| |
1980 1990
Year
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Initialize Things

numSubsets

dimensions

rSquares = {}

for d 1in dimensions:
rSquares[d] = []

10
(1,

2, 3, 4)
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Split Data

def splitData(xVals, yVals):
toTrain = random.sample(range(len(xVals)),
len(xVals)//2)
trainX, trainY, testX, testY = [],[],[],[]
for 1 1n range(len(xVals)):
1f 1 1n toTrain:
trainX.append(xVals[1])
trainY.append(yVals[i1])
else:
testX.append(xVals[1])
testY.append(yVals[i1])
return trainX, trainY, testX, testY
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Train, Test, and Report

for £ in range(numSubsets):
trainX, trainY, testX,testY = splitData(xVals, yVals)
for d in dimensions:
model = pylab.polyfit(trainX, trainY, d)

estYVals = pylab.polyval (model, testX)
rSquares[d].append(rSquared(testY, estYVals))

print('Mean R-squares for test data')
for d in dimensions:
mean = round(sum(rSquares[d])/len(rSquares[d]), 4)
sd = round(numpy.std(rSquares[d]), 4)
print('For dimensionality', d, 'mean ="', mean,
'Std =", sd)
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Results

Mean R-squares for test data

For dimensionality 1 mean
For dimensionality 2 mean
For dimensionality 3 mean
For dimensionality 4 mean

"Line seems to be the winner
> Highest average r-squared
> Smallest deviation across trials
o Simplest model
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Why we should run multiple sets

*"Note that deviations are a decimal order of magnitude

smaller than means
o Suggests that while there is good agreement, deviations
are large enough there could be a noticeable range of

variation across trials

sSuppose we had just run one trial
o Here are the R? values for each trial of linear fit

> [0.7828002156420516, O. 80637964025052067

0.79637132757274265, 0. 906,
0.76001112024853124 C 5708893650703574

0.72115408562589023, 0.
0.79031455375148507, 0. 77920238586399471]

o |If we had only run one split, and happened to get this
result, we might have reached a different conclusion

about validity of linear model




Wrapping Up Curve Fitting

="\We can use linear regression to fit a curve to data
> Mapping from independent values to dependent values

*That curve is a model of the data that can be used to
predict the value associated with independent values
we haven’t seen (out of sample data)

=R-squared used to evaluate model
> Higher not always “better” because of risk of over fitting

"Choose complexity of model based on
> Theory about structure of data

o Cross validation
o Simplicity
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