
MITOCW | Lecture 9B

PROFESSOR: Well, I hope you appreciate that we have inducted you into some real magic, the magic of

building languages, really building new languages. What have we looked at? We've looked at

an Escher picture language: this language invented by Peter Henderson. We looked at digital

logic language. Let's see. We've looked at the query language.

And the thing you should realize is, even though these were toy examples, they really are the

kernels of really useful things. So, for instance, the Escher picture language was taken by

Henry Wu, who's a student at MIT, and developed into a real language for laying out PC

boards based just on extending those structures. And the digital logic language, Jerry

mentioned when he showed it to you, was really extended to be used as the basis for a

simulator that was used to design a real computer. And the query language, of course, is kind

of the germ of prologue.

So we built all of these languages, they're all based on LISP. A lot of people ask what

particular problems is LISP good for solving for? The answer is LISP is not good for solving

any particular problems. What LISP is good for is constructing within it the right language to

solve the problems you want to solve, and that's how you should think about it.

So all of these languages were based on LISP. Now, what's LISP based on? Where's that

come from? Well, we looked at that too. We looked at the meta-circular evaluator and said

well, LISP is based on LISP. And when we start looking at that, we've got to do some real

magic, right? So what does that mean, right? Why operators, and fixed points, and the idea

that what this means is that LISP is somehow the fixed-point equation for this funny set of

things which are defined in terms of themselves. Now, it's real magic.

Well, today, for a final piece of magic, we're going to make all the magic go away. We already

know how to do that. The idea is, we're going to take the register machine architecture and

show how to implement LISP on terms of that. And, remember, the idea of the register

machine is that there's a fixed and finite part of the machine. There's a finite-state controller,

which does some particular thing with a particular amount of hardware. There are particular

data paths: the operation the machine does. And then, in order to implement recursion and

sustain the illusion of infinity, there's some large amount of memory, which is the stack.

So, if we implement LISP in terms of a register machine, then everything ought to become, at



this point, completely concrete. All the magic should go away. And, by the end of this talk, I

want you get the feeling that, as opposed to this very mysterious meta-circular evaluator, that

a LISP evaluator really is something that's concrete enough that you can hold in the palm of

your hand. You should be able to imagine holding a LISP interpreter there.

All right, how are we going to do this? We already have all the ingredients. See, what you

learned last time from Jerry is how to take any particular couple of LISP procedures and hand-

translate them into something that runs on a register machine. So, to implement all of LISP on

a register machine, all we have to do is take the particular procedures that are the meta-

circular evaluator and hand-translate them for a register machine. And that does all of LISP,

right? So, in principle, we already know how to do this. And, indeed, it's going to be no

different, in kind, from translating, say, recursive factorial or recursive Fibonacci. It's just bigger

and there's more of it. So it'd just be more details, but nothing really conceptually new.

All right, also, when we've done that, and the thing is completely explicit, and we see how to

implement LISP in terms of the actual sequential register operations, that's going to be our

final most explicit model of LISP in this course. And, remember, that's a progression through

this course. We started out with substitution, which is sort of like algebra. And then we went to

the environment model, which talked about the actual frames and how they got linked

together. And then we made that more concrete in the meta-circular evaluator.

There are things the meta-circular evaluator doesn't tell us. You should realize that. For

instance, it left unanswered the question of how a procedure, like recursive factorial here ,

somehow takes space that grows. On the other hand, a procedure which also looks

syntactically recursive, called fact-iter, somehow doesn't take space. We justify that it doesn't

need to take space by showing the substitution model. But we didn't really say how it happens

that the machine manages to do that, that that has to do with the details of how arguments are

passed to procedures. And that's the thing we didn't see in the meta-circular evaluator

precisely because the way arguments got passed to procedures in this LISP depended on the

way arguments got passed to procedures in this LISP. But, now, that's going to become

extremely explicit.

OK. Well, before going on to the evaluator, let me just give you a sense of what a whole LISP

system looks like so you can see the parts we're going to talk about and the parts we're not

going to talk about. Let's see, over here is a happy LISP user, and the LISP user is talking to

something called the reader. The reader's job in life is to take characters from the user and



turn them into data structures in something called a list structure memory.

All right, so the reader is going to take symbols, parentheses, and A's and B's, and ones and

threes that you type in, and turn these into actual list structure: pairs, and pointers, and things.

And so, by the time evaluator is going, there are no characters in the world. And, of course, in

more modern list systems, there's sort of a big morass here that might sit between the user

and the reader: Windows systems, and top levels, and mice, and all kinds of things. But

conceptually, characters are coming in.

All right, the reader transforms these into pointers to stuff in this memory, and that's what the

evaluator sees, OK? The evaluator has a bunch of helpers. It has all possible primitive

operators you might want. So there's a completely separate box, a floating point unit, or all

sorts of things, which do the primitive operators. And, if you want more special primitives, you

build more primitive operators, but they're separate from the evaluator. The evaluator finally

gets an answer and communicates that to the printer. And now, the printer's job in life is to

take this list structure coming from the evaluator, and turn it back into characters, and

communicate them to the user through whatever interface there is.

OK. Well, today, what we're going to talk about is this evaluator. The primitive operators have

nothing particular to do with LISP, they're however you like to implement primitive operations.

The reader and printer are actually complicated, but we're not going to talk about them. They

sort of have to do with details of how you might build up list structure from characters. So that

is a long story, but we're not going to talk about it. The list structure memory, we'll talk about

next time. So, pretty much, except for the details of reading and printing, the only mystery

that's going to be left after you see the evaluator is how you build list structure on conventional

memories. But we'll worry about that next time too.

OK. Well, let's start talking about the evaluator. The one that we're going to show you, of

course, is not, I think, nothing special about it. It's just a particular register machine that runs

LISP. And it has seven registers, and here are the seven registers. There's a register, called

EXP, and its job is to hold the expression to be evaluated. And by that, I mean it's going to

hold a pointer to someplace in list structure memory that holds the expression to be evaluated.

There's a register, called ENV, which holds the environment in which this expression is to be

evaluated. And, again, I made a pointer. The environment is some data structure. There's a

register, called FUN, which will hold the procedure to be applied when you go to apply a



procedure. A register, called ARGL, which wants the list of evaluated arguments.

What you can start seeing here is the basic structure of the evaluator. Remember how

evaluators work. There's a piece that takes expressions and environments, and there's a

piece that takes functions, or procedures and arguments. And going back and forth around

here is the eval/apply loop. So those are the basic pieces of the eval and apply.

Then there's some other things, there's continue. You just saw before how the continue

register is used to implement recursion and stack discipline. There's a register that's going to

hold the result of some evaluation. And then, besides that, there's one temporary register,

called UNEV, which typically, in the evaluator, is going to be used to hold temporary pieces of

the expression you're working on, which you haven't gotten around to evaluate yet, right? So

there's my machine: a seven-register machine. And, of course, you might want to make a

machine with a lot more registers to get better performance, but this is just a tiny, minimal one.

Well, how about the data paths? This machine has a lot of special operations for LISP. So,

here are some typical data paths. A typical one might be, oh, assign to the VAL register the

contents of the EXP register. In terms of those diagrams you saw, that's a little button on some

arrow.

Here's a more complicated one. It says branch, if the thing in the expression register is a

conditional to some label here, called the ev-conditional. And you can imagine this

implemented in a lot of different ways. You might imagine this conditional test as a special

purpose sub-routine, and conditional might be represented as some data abstraction that you

don't care about at this level of detail. So that might be done as a sub-routine. This might be a

machine with hardware-types, and conditional might be testing some bits for a particular code.

There are all sorts of ways that's beneath the level of abstraction we're looking at.

Another kind of operation, and there are a lot of different operations assigned to EXP, the first

clause of what's in EXP. This might be part of processing a conditional. And, again, first clause

is some selector whose details we don't care about. And you can, again, imagine that as a

sub-routine which'll do some list operations, or you can imagine that as something that's built

directly into hardware. The reason I keep saying you can imagine it built directly into hardware

is even though there are a lot of operations, there are still a fixed number of them. I forget how

many, maybe 150. So, it's plausible to think of building these directly into hardware.

Here's a more complicated one. You can see this has to do with looking up the values of



variables. It says assign to the VAL register the result of looking up the variable value of some

particular expression, which, in this case, is supposed to be a variable in some environment.

And this'll be some operation that searches through the environment structure, however it is

represented, and goes and looks up that variable. And, again, that's below the level of detail

that we're thinking about. This has to do with the details of the data structures for representing

environments.

But, anyway, there is this fixed and finite number of operations in the register machine. Well,

what's its overall structure? Those are some typical operations. Remember what we have to

do, we have to take the meta-circular evaluator-- and here's a piece of the meta-circular

evaluator. This is the one using abstract syntax that's in the book. It's a little bit different from

the one that Jerry shows you. And the main thing to remember about the evaluator is that it's

doing some sort of case analysis on the kinds of expressions: so if it's either self-evaluated, or

quoted, or whatever else. And then, in the general case where the expression it's looking at is

an application, there's some tricky recursions going on.

First of all, eval has to call itself both to evaluate the operator and to evaluate all the operands.

So there's this sort of red recursion of values walking down the tree that's really the easy

recursion. That's just a val walking down this tree of expressions. Then, in the evaluator,

there's a hard recursion. There's the red to green. Eval calls apply. That's the case where

evaluating a procedure or argument reduces to applying the procedure to the list of

arguments.

And then, apply comes over here. Apply takes a procedure and arguments and, in the general

case where there's a compound procedure, apply goes around and green calls red. Apply

comes around and calls eval again. Eval's the body of the procedure in the result of extending

the environment with the parameters of the procedure by binding the arguments. Except in the

primitive case, where it just calls something else primitive-apply, which is not really the

business of the evaluator. So this sort of red to green, to red to green, that's the eval/apply

loop, and that's the thing that we're going to want to see in the evaluator.

All right. Well, it won't surprise you at all that the two big pieces of this evaluator correspond to

eval and apply. There's a piece called eval-dispatch, and a piece called apply-dispatch. And,

before we get into the details of the code, the way to understand this is to think, again, in

terms of these pieces of the evaluator having contracts with the rest of the world. What do they

do from the outside before getting into the grungy details?



Well, the contract for eval-dispatch-- remember, it corresponds to eval. It's got to evaluate an

expression in an environment. So, in particular, what this one is going to do, eval-dispatch will

assume that, when you call it, that the expression you want to evaluate is in the EXP register.

The environment in which you want the evaluation to take place is in the ENV register. And

continue tells you the place where the machine should go next when the evaluation is done.

Eval-dispatch's contract is that it'll actually perform that evaluation, and, at the end of which,

it'll end up at the place specified by continue. The result of the evaluation will be in the VAL

register. And it just warns you, it makes no promises about what happens to the registers. All

other registers might be destroyed. So, there's one piece, OK?

Together, the pieces, apply-dispatch that corresponds to apply, it's got to apply a procedure to

some arguments, so it assumes that this register, ARGL, contains a list of the evaluated

arguments. FUN contains the procedure. Those correspond to the arguments to the apply

procedure in the meta-circular evaluator.

And apply, in this particular evaluator, we're going to use a discipline which says the place the

machine should go to next when apply is done is, at the moment apply-dispatch is called at the

top of the stack, that's just discipline for the way this particular machine's organized. And now

apply's contract is given all that. It'll perform the application. The result of that application will

end up in VAL. The stack will be popped. And, again, the contents of all the other registers

may be destroyed, all right? So that's the basic organization of this machine. Let's break for a

little bit and see if there are any questions, and then we'll do a real example.

Well, let's take the register machine now, and actually step through, and really, in real detail,

so you see completely concrete how some expressions are evaluated, all right? So, let's start

with a very simple expression. Let's evaluate the expression 1. And we need an environment,

so let's imagine that somewhere there's an environment, we'll call it E,0. And just, since we'll

use these later, we obviously don't really need anything to evaluate 1. But, just for reference

later, let's assume that E,0 has in it an X that's bound to 3 and a Y that's bound to 4, OK?

And now what we're going to do is we're going to evaluate 1 in this environment, and so the

ENV register has a pointer to this environment, E,0, all right? So let's watch that thing go. What

I'm going to do is step through the code. And, let's see, I'll be the controller. And now what I

need, since this gets rather complicated, is a very little execution unit. So here's the execution

unit, OK? OK.



OK. All right, now we're going to start. We're going to start the machine at eval-dispatch, right?

That's the beginning of this. Eval-dispatch is going to look at the expression in dispatch, just

like eval where we look at the very first thing. We branch on whether or not this expression is

self-evaluating. Self-evaluating is some abstraction we put into the machine-- it's going to be

true for numbers-- to a place called ev-self-eval, right?

So me, being the controller, looks at ev-self-eval, so we'll go over to there. Ev-self-eval says

fine, assign to val whatever is in the expression unit, OK? And I have a bug because what I

didn't do when I initialized this machine is also say what's supposed to happen when it's done,

so I should have started out the machine with done being in the continue register, OK? So we

assign to VAL. And now go to fetch of continue, and [? the value changed. ?] OK.

OK, let's try something harder. Let's reset the machine here, and we'll put in the expression

register, X, OK? Start again at eval-dispatch. Check, is it self-evaluating? No. Is it a variable?

Yes. We go off to ev-variable. It says assign to VAL, look up the variable value in the

expression register, OK? Go to fetch of continue.

PROFESSOR: Done.

PROFESSOR: OK. All right. Well, that's the basic idea. That's a simple operation of the machine. Now, let's

actually do something a little bit more interesting. Let's look at the expression the sum of x and

y. OK. And now we'll see how you start unrolling these expression trees, OK?

Well, start again at eval-dispatch, all right? Self-evaluating? No. Variable? No. All the other

special forms which I didn't write down, like quote, and lambda, and set, and whatever, it's

none of those. It turns out to be an application, so we go off to ev-application, OK? Ev-

application, remember what it's going to do overall. It is going to evaluate the operator. It's

going to evaluate the arguments, and then it's going to go apply them. So, before we start,

since we're being very literal, we'd better remember that, somewhere in this environment, it's

linked to another environment in which plus is bound to the primitive procedure plus before we

get an unknown variable in our machine.

OK, so we're at ev-application. OK, assign to UNEV the operands of what's in the expression

register, OK? Those are the operands. UNEV's a temporary register where we're going to

save them.

PROFESSOR: I'm assigning.



PROFESSOR: Assign to x the operator. Now, notice we've destroyed that expression in x, but the piece that

we need is now in UNEV. OK. Now, we're going to get set up to recursively evaluate the

operator. Save the continue register on the stack. Save the environment. Save UNEV. OK,

assign to continue a label called eval-args.

Now, what have we done? We've set up for a recursive call. We're about to go to eval-

dispatch. We've set up for a recursive call to eval-dispatch. What did we do? We took the

things we're going to need later, those operands that were in UNEV; the environment in which

we're going to eventually have to, maybe, evaluate those operands; the place we eventually

want to go to, which, in this case, was done; we've saved them on the stack. The reason we

saved them on the stack is because eval-dispatch makes no promises about what registers it

may destroy. So all that stuff is saved on the stack.

Now, we've set up eval-dispatch's contract. There's a new expression, which is the operator

plus; a new environment, although, in this case, it's the same one; and a new place to go to

when you're done, which is eval-args. So that's set up. Now, we're going to go off to eval-

dispatch. Here we are back at eval-dispatch. It's not self-evaluating. Oh, it's a variable, so we'd

better go off to ev-variable, right? Ev-variable is assigned to VAL. Look up the variable value of

the expression, OK? So VAL is the primitive procedure plus, OK? And go to fetch of continue.

PROFESSOR: Eval-args.

PROFESSOR: Right, which is now eval-args not done. So we come back here at eval-args, and what do we

do? We're going to restore the stuff that we saved, so we restore UNEV. And notice, there, it

wasn't necessary, although, in general, it would be. It might be some arbitrary evaluation that

happened. We restore ENV. OK, we assign to FUN fetch of VAL.

OK, now, we're going to go off and start evaluating some arguments. Well, first thing we'd

better do is save FUN because some arbitrary stuff might happen in that evaluation. We

initialize the argument list. Assign to argl an empty argument list, and go to eval-arg-loop, OK?

At eval-arg-loop, the idea of this is we're going to evaluate the pieces of the expressions that

are in UNEV, one by one, and move them from unevaluated in UNEV to evaluated in the arg

list, OK? So we save argl. We assign to x the first operand of the stuff in UNEV.

Now, we check and see if that was the last operand. In this case, it is not, all right? So we save

the environment. We save UNEV because those are all things we might need later. We're



going to need the environment to do some more evaluations. We're going to need UNEV to

look at what the rest of those arguments were. We're going to assign continue a place called

accumulate-args, or accumulate-arg.

OK, now, we've set up for another call to eval-dispatch, OK? All right, now, let me short-circuit

this so we don't go through the details of eval-dispatch. Eval-dispatch's contract says I'm going

to end up, the world will end up, with the value of evaluating this expression in this

environment in the VAL register, and I'll end up there. So we short-circuit all of this, and a 3

ends up in VAL. And, when we return from eval-dispatch, we're going to return to accumulate-

arg.

PROFESSOR: Accumulate-arg.

PROFESSOR: With 3 in the VAL register, OK? So that short-circuited that evaluation. Now, what do we do?

We're going to go back and look at the rest of the arguments, so we restore UNEV. We restore

ENV. We restore argl. One thing.

PROFESSOR: Oops! Parity error.

[LAUGHTER]

PROFESSOR: Restore argl.

PROFESSOR: OK. OK, we assign to argl consing on fetch of the value register to what's in argl. OK, we

assign to UNEV the rest of the operands in fetch of UNEV, and we go back to eval-arg-loop.

PROFESSOR: Eval-arg-loop.

PROFESSOR: OK. Now, we're about to do the next argument, so the first thing we do is save argl. OK, we

assign to x the first operand of fetch of UNEV. OK, we test and see if that's the last operand. In

this case, it is, so we're going to go to a special place that says evaluate the last argument

because, notice, after evaluating the argument, we don't need the environment any more.

That's going to be the difference.

So here, at eval-last-arg, which is assigned to accumulate-last-arg, now, we're set up again for

eval-dispatch. We've got a place to go to when we're done. We've got an expression. We've

got an environment. OK, so we'll short-circuit the call to eval-dispatch. And what'll happen is

there's a y there, it's 4 in that environment, so VAL will end up with 4 in it. And, then, we're



going to end up at accumulate-last-arg, OK? So, at accumulate-last-arg, we restore argl. We

assign to argl cons of fetch of the new value onto it, so we cons a 4 onto that. We restore what

was saved in the function register. And notice, in this case, it had not been destroyed, but, in

general, it will be.

And now, we're ready to go off to apply-dispatch, all right? So we've just gone through the

eval. We evaluated the argument, the operator, and the arguments, and now, we're about to

apply them. So we come off to apply-dispatch here, OK? We come off to apply-dispatch, and

we're going to check whether it's a primitive or a compound procedure.

PROFESSOR: Yes.

PROFESSOR: All right. So, in this case, it's a primitive procedure, and we go off to primitive-apply. So we go

off to primitive-apply, and it says assign to VAL the result of applying primitive procedure of the

function to the argument list.

PROFESSOR: I don't know how to add. I'm just an execution unit.

PROFESSOR: Well, I don't know how to add either. I'm just the evaluator, so we need a primitive operator.

Let's see, so the primitive operator, what's the sum of 3 and 4?

AUDIENCE: 7.

PROFESSOR: OK, 7.

PROFESSOR: Thank you.

PROFESSOR: Now, we restore continue, and we go to fetch of continue.

PROFESSOR: Done.

PROFESSOR: OK. Well, that was in as much detail as you will ever see. We'll never do it in as much detail

again. One very important thing to notice is that we just executed a recursive procedure, right?

This whole thing, we used a stack and the evaluator was recursive. A lot of people think the

reason that you need a stack and recursion in an evaluator is because you might be

evaluating recursive procedures like factorial or Fibonacci. It's not true. So you notice we did

recursion here, and all we evaluated was plus X, Y, all right? The reason that you need

recursion in the evaluator is because the evaluation process, itself, is recursive, all right? It's

not because the procedure that you might be evaluating in LISP is a recursive procedure. So



that's an important thing that people get confused about a lot.

The other thing to notice is that, when we're done here, we're really done. Not only are we at

done, but there's no accumulated stuff on the stack, right? The machine is back to its initial

state, all right? So that's part of what it means to be done. Another way to say that is the

evaluation process has reduced the expression, plus X, Y, to the value here, 7. And by

reduced, I mean a very particular thing. It means that there's nothing left on the stack. The

machine is now in the same state, except there's something in the value register. It's not part

of a sub-problem of anything. There's nothing to go back to. OK. Let's break. Question?

AUDIENCE: The question here, in the stack, is because the data may be recursive. You may have

embedded expressions, for instance.

PROFESSOR: Yes, because you might have embedded expressions. But, again, don't confuse that with what

people sometimes mean by the data may be recursive, which is to say you have these list-

structured, recursive data list operations. That has nothing to do with it. It's simply that the

expressions contain sub-expressions. Yeah?

AUDIENCE: Why is it that the order of the arguments in the arg list got reversed?

PROFESSOR: Ah! Yes, I should've mentioned that. Here, the reason the order is reversed-- it's a question of

what you mean by reversed. I believe it was Newton. In the very early part of optics, people

realized that, when you look through the lens of your eye, the image was up-side down. And

there was a lot of argument about why that didn't mean you saw things up-side down. So it's

sort of the same issue. Reversed from what? So we just need some convention. The reason

that they're coming at 4, 3 is because we're taking UNEV and consing the result onto argl. So

you have to realize you've made that convention.

The place that you have to realize that-- well, there's actually two places. One is in apply-

primitive-operator, which has to realize that the arguments to primitives go in, in the opposite

order from the way you're writing them down. And the other one is, we'll see later when you

actually go to bind a function's parameters, you should realize the arguments are going to

come in from the opposite order of the variables to which you're binding them. So, if you just

keep track of that, there's no problem. Also, this is completely arbitrary because, if we'd done,

say, an iteration through a vector assigning them, they might come out in the other order, OK?

So it's just a convention of the way this particular evaluator works. All right, let's take a break.



We just saw evaluating an expression and, of course, that was very simple one. But, in

essence, it would be no different if it was some big nested expression, so there would just be

deeper recursion on the stack. But what I want to do now is show you the last piece. I want to

walk you around this eval and apply loop, right? That's the thing we haven't seen, really. We

haven't seen any compound procedures where applying a procedure reduces to evaluating

the body of the procedure, so let's just suppose we had this. Suppose we were looking at the

procedure define F of A and B to be the sum of A and B. So, as we typed in that procedure

previously, and now we're going to evaluate F of X and Y, again, in this environment, E,0,

where X is bound to 3 and Y is bound to 4.

When the defined is executed, remember, there's a lambda here, and lambdas create

procedures. And, basically, what will happen is, in E,0, we'll end up with a binding for F, which

will say F is a procedure, and its args are A and B, and its body is plus a,b. So that's what the

environment would have looked like had we made that definition.

Then, when we go to evaluate F of X and Y, we'll go through exactly the same process that we

did before. It's even the same expression. The only difference is that F, instead of having

primitive plus in it, will have this thing. And so we'll go through exactly the same process,

except this time, when we end up at apply-dispatch, the function register, instead of having

primitive plus, will have a thing that will represent it saying procedure, where the args are A

and B, and the body is plus A, B. And, again, what I mean, by its ENV, I mean there's a pointer

to it, so don't worry that I'm writing a lot of stuff there. There's a pointer to this procedure data

structure.

OK, so, we're in exactly the same situation. We get to apply-dispatch, so, here, we come to

apply-dispatch. Last time, we branched off to a primitive procedure. Here, it says oh, we now

have a compound procedure, so we're going to go off to compound-apply. Now, what's

compound-apply? Well, remember what the meta-circular evaluator did? Compound-apply

said we're going to evaluate the body of the procedure in some new environment.

Where does that new environment come from? We take the environment that was packaged

with the procedure, we bind the parameters of the procedure to the arguments that we're

passing in, and use that as a new frame to extend the procedure environment. And that's the

environment in which we evaluate the procedure body, right? That's going around the

apply/eval loop. That's apply coming back to call eval, all right?



OK. So, now, that's all we have to do in compound-apply. What are we going to do? We're

going to manufacture a new environment. And we're going to manufacture a new

environment, let's see, that we'll call E,1. E,1 is going to be some environment where the

parameters of the procedure, where A is bound to 3 and B is bound to 4, and it's linked to E,0

because that's where f is defined. And, in this environment, we're going to evaluate the body

of the procedure.

So let's look at that, all right? All right, here we are at compound-apply, which says assign to

the expression register the body of the procedure that's in the function register. So I assign to

the expression register the procedure body, OK? That's going to be evaluated in an

environment which is formed by making some bindings using information determined by the

procedure-- that's what's in FUN-- and the argument list.

And let's not worry about exactly what that does, but you can see the information's there. So

make bindings will say oh, the procedure, itself, had an environment attached to it. I didn't

write that quite here. I should've said in environment because every procedure gets built with

an environment. So, from that environment, it knows what the procedure's definition

environment is. It knows what the arguments are. It looks at argl, and then you see a reversal

convention here. It just has to know that argl is reversed, and it builds this frame, E,1. All right,

so, let's assume that that's what make bindings returns, so it assigns to ENV this thing, E,1.

All right, the next thing it says is restore continue. Remember what continue was here? It got

put up in the last segment. Continue got stored. That was the original done, which said what

are you going to do after you're done with this particular application? It was one of the very

first things that happened when we evaluated the application.

And now, finally, we're going to restore continue. Remember apply-dispatch's contract. It

assumes that where it should go to next was on the stack, and there it was on the stack.

Continue has done, and now we're going to go back to eval-dispatch. We're set up again. We

have an expression, an environment, and a place to go to. We're not going to go through that

because it's sort of the same expression.

OK, but the thing, again, to notice is, at this point, we have reduced the original expression,

F,X,Y, right? We've reduced evaluating F,X,Y in environment E,0 to evaluate plus A, B in E,1.

And notice, nothing's on the stack, right? It's a reduction. At this point, the machine does not

contain, as part of its state, the fact that it's in the middle of evaluating some procedure called



f, that's gone, right? There's no accumulated state, OK?

Again, that's a very important idea. That's the meaning of, when we used to write in the

substitution model, this expression reduces to that expression. And you don't have to

remember anything. And here, you see the meaning of reduction. At this point, there is nothing

on the stack. See, that has very important consequences. Let's go back and look at iterative

factorial, all right?

Remember, this was some sort of loop and doing iter. And we kept saying that's an iterative

procedure, right? And what we wrote, remember, are things like, we said, fact-iter of 5. We

wrote things like reduces to iter of 1, and 1, and 5, which reduces to iter of 1, and 2, and 5,

and so on, and so on, and so on. And we kept saying well, look, you don't have to build up any

storage to do that. And we waved our hands, and said in principle, there's no storage needed.

Now, you see no storage needed. Each of these is a real reduction, right?

As you walk through these expressions, what you'll see are these expressions on the stack in

some particular environment, and then these expressions in the EXP register in some

particular environment. And, at each point, there'll be no accumulated stuff on the stack

because each one's a real reduction, OK?

All right, so, for example, just to go through it in a little bit more care, if I start out with an

expression that says something like, oh, say, fact-iter of 5 in some environment that will, at

some point, create an environment in which n is down to 5. Let's call that-- And, at some point,

the machine will reduce this whole thing to a thing that says that's really iter of 1, and 1, and n,

evaluated in this environment, E,1 with nothing on the stack. See, at this moment, the machine

is not remembering that evaluating this expression, iter-- which is the loop-- is part of this thing

called iterative factorial. It's not remembering that. It's just reducing the expression to that,

right? If we look again at the body of iterative factorial, this expression has reduced to that

expression. Oh, I shouldn't have the n there. It's a slightly different convention from the slide to

the program, OK?

And, then, what's the body of iter? Well, iter's going to be an it, and I won't go through the

details of if. It'll evaluate the predicate. In this case, it'll be false. And this iter will now reduce to

the expression iter of whatever it says, star, counter product, and-- what does it say-- plus

counter 1 in some other environment, by this time, E,2, where E,2 will be set up having

bindings for product and counter, right? And it'll reduce to that, right? It won't be remembering



that it's part of something that it has to return to. And when iter calls iter again, it'll reduce to

another thing that looks like this in some environment, E,3, which has new bindings for product

and counter. So, if you're wondering, see, if you've always been queasy about how it is we've

been saying those procedures, that look syntactically recursive, are, in fact, iterative, run in

constant space, well, I don't know if this makes you less queasy, but at least it shows you

what's happening. There really isn't any buildup there.

Now, you might ask well, is there buildup in principle in these environment frames? And the

answer is yeah, you have to make these new environment frames, but you don't have to hang

onto them when you're done. They can be garbage collected, or the space can be reused

automatically. But you see the control structure of the evaluator is really using this idea that

you actually have a reduction, so these procedures really are iterative procedures. All right,

let's stop for questions. All right, let's break.

Let me contrast the iterative procedure just so you'll see where space does build up with a

recursive procedure, so you can see the difference. Let's look at the evaluation of recursive

factorial, all right? So, here's fact-recursive, or standard factorial definition. We said this one is

still a recursive procedure, but this is actually a recursive process.

And then, just to link it back to the way we started, we said oh, you can see that it's going to be

recursive process by the substitution model because, if I say recursive factorial of 5, that turns

into 5 times-- what is it, fact-rec, or record fact-- 5 times recursive factorial of 4, which turns

into 5 times 4 times fact-rec of 3, which returns into 5 times 4 times 3 times, and so on, right?

The idea is there was this chain of stuff building up, which justified, in the substitution model,

the fact that it's recursive. And now, let's actually see that chain of stuff build up and where it is

in the machine, OK?

All right, well, let's imagine we're going to start out again. We'll tell it to evaluate recursive

factorial of 5 in some environment, again, E,0 where recursive factorial is defined, OK? Well,

now we know what's eventually going to happen. This is going to come along, it'll evaluate

those things, figure out it's a procedure, build somewhere over here an environment, E,1,

which has n bound to 5, which hangs off of E,0, which would be, presumably, the definition

environment of recursive factorial, OK?

And, in this environment, it's going to go off and evaluate the body. So, again, the evaluation

here will reduce to evaluating the body in E,1. That's going to look at an if, and I won't go



through the details of if. It'll look at the predicate. It'll decide it eventually has to evaluate the

alternative. So this whole thing, again, will reduce to the alternative of recursive factorial, the

alternative clause, which says that this whole thing reduces to times n of recursive factorial of

n minus 1 in the environment E,1, OK? So the original expression, now, is going to reduce to

evaluating that expression, all right?

Now we have an application. We did an application before. Remember what happens in an

application? The first thing you do is you go off and you save the value of the continue register

on the stack. So the stack here is going to have done in it. And then you're going to set up to

evaluate the sub-parts, OK? So here we go off to evaluate the sub-parts.

First thing we're going to do is evaluate the operator. What happens when we evaluate an

operator? Well, we arrange things so that the operator ends up in the expression register. The

environments in the ENV register continue someplace where we're going to go evaluate the

arguments. And, on the stack, we've saved the original continue, which is where we wanted to

be when we're all done. And then the things we needed when we're going to get done

evaluating the operator, the things we'll need to evaluate the arguments, namely, the

environment and those arguments, those unevaluated arguments, so there they are sitting on

the stack. And we're about to go off to evaluate the operator.

Well, when we return from this particular call-- so we're about to call eval-dispatch here-- when

we return from this call, the value of that operator, which, in this case, is going to be the

primitive multiplier procedure, will end up in the FUN register, all right? We're going to evaluate

some arguments. They will evaluate in here. That'll give us 5, in this case. We're going to put

that in the argl register, and then we'll go off to evaluate the second operand.

So, at the point where we go off to evaluate the second operand-- and I'll skip details like

computing, and minus 1, and all of that-- but, when we go off to evaluate the second operand,

that will eventually reduce to another call to fact-recursive. And, what we've got on the stack

here is the operator from that combination that we're going to use it in and the other

argument, OK? So, now, we're set up for another call to recursive factorial. And, when we're

done with this one, we're going to go to accumulate the last arg. And remember what that'll

do? That'll say oh, whatever the result of this has to get combined with that, and we're going to

multiply them.

But, notice now, we're at another recursive factorial. We're about to call eval-dispatch again,



except we haven't really reduced it because there's stuff on the stack now. The stuff on the

stack says oh, when you get back, you'd better multiply it by the 5 you had hanging there. So,

when we go off to make another call, we evaluate the n minus 1. That gives us another

environment in which the new n's going to be down to 4. And we're about to call eval-dispatch

again, right?

We get another call. That 4 is going to end up in the same situation. We'll end up with another

call to fact-recursive n. And sitting on the stack will be the stuff from the original one and, now,

the subsidiary one we're doing. And both of them are waiting for the same thing. They're going

to go to accumulate a last argument. And then, of course, when we go to the fourth call, the

same thing happens, right? And this goes on, and on, and on.

And what you see here on the stack, exactly what's sitting here on the stack, the thing that

says times and 5. And what you're going to do with that is accumulate that into a last

argument. That's exactly this, right? This is exactly where that stuff is hanging. Effectively, the

operator you're going to apply, the other argument that it's got to be multiplied by when you

get back and the parentheses, which says yeah, what you wanted to do was accumulate them.

So, you see, the substitution model is not such a lie. That really is, in some sense, what's

sitting right on the stack. OK.

All right, so that, in some sense, should explain for you, or at least convince you, that,

somehow, this evaluator is managing to take these procedures and execute some of them

iteratively and some of them recursively, even though, as syntactically, they look like recursive

procedures. How's it managing to do that? Well, the basic reason it's managing to do that is

the evaluator is set up to save only what it needs later.

So, for example, at the point where you've reduced evaluating an expression and an

environment to applying a procedure to some arguments, it doesn't need that original

environment anymore because any environment stuff will be packaged inside the procedures

where the application's going to happen. All right, similarly, when you're going along evaluating

an argument list, when you've finished evaluating the list, when you're finished evaluating the

last argument, you don't need that argument list any more, right? And you don't need the

environment where those arguments would be evaluated, OK? So the basic reason that this

interpreter is being so smart is that it's not being smart at all, it's being stupid. It's just saying

I'm only going to save what I really need.



Well, let me show you here. Here's the actual thing that's making a tail recursive. Remember,

it's the restore of continue. It's saying when I go off to evaluate the procedure body, I should

tell eval to come back to the place where that original evaluation was supposed to come back

to. So, in some sense, you want to say what's the actual line that makes a tail recursive? It's

that one.

If I wanted to build a non-tail recursive evaluator, for some strange reason, all I would need to

do is, instead of restoring continue at this point, I'd set up a label down here called, "Where to

come back after you've finished applying the procedure." Instead, I'd set continue to that. I'd

go to eval-dispatch, and then eval-dispatch would come back here. At that point, I would

restore continue and go to the original one. So here, the only consequence of that would be to

make it non-tail recursive. It would give you exactly the same answers, except, if you did that

iterative factorial and all those iterative procedures, it would execute recursively.

Well, I lied to you a little bit, but just a little bit, because I showed you a slightly over-simplified

evaluator where it assumes that each procedure body has only one expression. Remember, in

general, a procedure has a sequence of expressions in it. So there's nothing really

conceptually new. Let me just show you the actual evaluator that handles sequences of

expressions.

This is compound-apply now, and the only difference from the old one is that, instead of going

off to eval directly, it takes the whole body of the procedure, which, in this case, is a sequence

of expressions, and goes off to eval-sequence. And eval-sequence is a little loop that,

basically, does these evaluations one at a time. So it does an evaluation. Says oh, when I

come back, I'd better come back here to do the next one. And, when I'm all done, when I want

to get the last expression, I just restore my continue and go off to eval-dispatch.

And, again, if you wanted for some reason to break tail recursion in this evaluator, all you need

to do is not handle the last expression, especially. Just say, after you've done the last

expression, come back to some other place after which you restore continue. And, for some

reason, a lot of LISP evaluators tended to work that way. And the only consequence of that is

that iterative procedures built up stack. And it's not clear why that happened.

All right. Well, let me just sort of summarize, since this is a lot of details in a big program. But

the main point is that it's no different, conceptually, from translating any other program. And

the main idea is that we have this universal evaluator program, the meta-circular evaluator. If



we translate that into LISP, then we have all of LISP. And that's all we did, OK?

The second point is that the magic's gone away. There should be no more magic in this whole

system, right? In principle, it should all be very clear except, maybe, for how list structured

memory works, and we'll see that later. But that's not very hard.

The third point is that all this tail recursion came from the discipline of eval being very careful

to save only what it needs next time. It's not some arbitrary thing where we're saying well,

whenever we call a sub-routine, we'll save all the registers in the world and come back, right?

See, sometimes it pays to really worry about efficiency. And, when you're down in the guts of

your evaluator machine, it really pays to think about things like that because it makes big

consequences.

Well, I hope what this has done is really made the evaluator seem concrete, right? I hope you

really believe that somebody could hold a LISP evaluator in the palm of their hand. Maybe to

help you believe that, here's a LISP evaluator that I'm holding the palm of my hand, right? And

this is a chip which is actually quite a bit more complicated than the evaluator I showed you.

Maybe, here's a better picture of it. What there is, is you can see the same overall structure.

This is a register array. These are the data paths. Here's a finite state controller. And again,

finite state, that's all there is. And somewhere there's external memory that'll worry about

things.

And this particular one is very complicated because it's trying to run LISP fast. And it has some

very, very fast parallel operations in there like, if you want to index into an array,

simultaneously check that the index is an integer, check that it doesn't exceed the array

bands, and go off and do the memory access, and do all those things simultaneously. And

then, later, if they're all OK, actually get the value there. So there are a lot of complicated

operations in these data paths for making LISP run in parallel. It's a completely non-risk

philosophy of evaluating LISP.

And then, this microcode is pretty complicated. Let's see, there's what? There's about 389

instructions of 220-bit microcode sitting here because these are very complicated data paths.

And the whole thing has about 89,000 transistors, OK? OK. Well, I hope that that takes away a

lot of the mystery. Maybe somebody wants to look at this. Yeah. OK. Let's stop. Questions?

AUDIENCE: OK, now, it sounds like what you're saying is that, with the restore continue put in the proper

place, that procedures that would invoke a recursive process now invoke an integer process



just by the way that the eval signature is?

PROFESSOR: I think the way I'd prefer to put it is that, with restore continue put in the wrong place, you can

cause any syntactically-looking recursive procedure, in fact, to build up stack as it runs. But

there's no reason for that, so you might want to play around with it. You can just switch around

two or three instructions in the way compound-apply comes back, and you'll get something

which isn't tail recursive.

But the thing I wanted to emphasize is there's no magic. It's not as if there's some very clever

pre-processing program that's looking at this procedure, factorial iter, and say oh, gee, I really

notice that I don't have to push stack in order to do this. Some people think that that's what's

going on. It's something much, much more dumb than that, it's this one place you're putting

the restore instruction. It's just automatic.

AUDIENCE: OK.

AUDIENCE: But that's not affecting the time complexity is it?

PROFESSOR: No.

AUDIENCE: It's just that it's handling it recursively instead of iteratively. But, in terms of the order of time it

takes to finish the operation, it's the same one way or the other, right?

PROFESSOR: Yes. Tail recursion is not going to change the time complexity of anything because, in some

sense, it's the same algorithm that's going on. What it's doing is really making this thing run as

an iteration, right? Not going to run out of memory counting up to a giant number simply

because the stack would get pushed.

See, the thing you really have to believe is that, when we write-- see, we've been writing all

these things called iterations, infinite loops, define loop to be called loop. That's is as much an

iteration as if we wrote do forever loop, right? It's just syntactic sugar as the difference. These

things are real, honest to god, iterations, right? They don't change the time complexity, but

they turn them into real iterations. All right, thank you.


