
6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

6.001 Notes: Section 1.1

Slide 1.1.1
This first thing we need to do is discuss the focus of 6.001.
What is this course all about? This seems quite obvious -- this
is a course about computer science. But we are going to claim
in a rather strange way that this is not really true.

Slide 1.1.2
First of all, it is not really about science. It is really much more
about engineering or art than it is about science.

Slide 1.1.3
...and it is not really about computers. Now that definitely
sounds strange! But let me tell you why I claim it is not really
about computers. I claim it is not really about computers in the
same way that physics is not really just about particle
accelerators, or biology is not really just about microscopes, or
geometry is not really about surveying instruments.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 1.1.4
In fact, geometry is a good analogy to use here. It has also a
terrible name, which comes from two words: GHIA or earth,
and METRA or measurement. And to the ancient Egyptians,
that is exactly what geometry was -- instruments for measuring
the earth, or surveying. Thousands of years ago, the Nile
annually flooded, and eventually retreated, wiping out most of
the identifying landmarks. It also deposited rich soil in its wake,
making the land that it flooded very valuable, but also very hard
to keep track of. As a consequence, the Egyptian priesthood had
to arbitrate the restoration of land boundaries after the annual
flooding. Since there were no landmarks, they needed a better
way of determining boundaries, and they invented geometry, or

earth measuring. Hence, to the Egyptians, geometry was surveying -- and about surveying instruments. This is a
common effect. When a field is just getting started, it’s easy to confuse the essence of the field with its tools,
because we usually understand the tools much less well in the infancy of an area. In hindsight, we realize that the
important essence of what the Egyptians did was to formalize the notions of space and time which later led to
axiomatic methods for dealing with declarative, or What Is kinds of knowledge. --- So geometry not really about
measuring devices, but rather about declarative knowledge.

Slide 1.1.5
So geometry is not really about surveying, it is actually
fundamentally about axioms for dealing with a particular kind
of knowledge, known as Declarative, or "what is true"
knowledge.

Slide 1.1.6
By analogy to geometry, Computer Science is not really about
computers -- it is not about the tool. It is actually about the kind
of knowledge that computer science makes available to us.
What we are going to see in this course is that computer science
is dealing with a different kind of knowledge -- Imperative or
"how to" knowledge. It is trying to capture the notion of a
process that causes information to evolve from one state to
another, and we want to see how we can uses methods to
capture that knowledge.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 1.1.7
First, what is declarative knowledge? It is knowledge that talks
about what is true. It makes statements of fact that one can use
to try to reason about things. For example, here is a statement
of truth about square roots. It provides a definition of a square
root. As a consequence if someone were to hand you a possible
value for the square root of some x, you could check it by using
this definition. But it doesn't tell you anything about how to
find the value of square root of x.

Slide 1.1.8
On the other hand, imperative knowledge talks about "how to"
knowledge. It tends to describe a specific sequence of steps that
characterize the evolution of a process by which one can
deduce information, transforming one set of facts into a new
set.

Slide 1.1.9
So here for example is a very old algorithm, that is, a specific
piece of imperative knowledge, for find an approximation to the
square root of some number, x.

Slide 1.1.10
Okay -- let's test it out. Suppose we want to find the square root
of 2. We will see how this sequence of steps describes a process
for finding the square root of 2.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 1.1.11
So here we go. We'll create a little chart to keep track of the
algorithm. We want to find the square root of 2, so x = 2. And
we start with some guess, say G = 1. Our algorithm tells us how
to improve this guess, by averaging g and x divided by g.

Slide 1.1.12
So we compute x/G. And then the algorithm says to get a new
guess, G, by averaging the old guess and this ratio -- giving us a
better guess for the square root of 2.

Slide 1.1.13
If we decide we are not close enough (i.e. square our current
guess is too far away from 2) we can continue. We take our
current value for the guess, and compute x divided by that
value. Then we get a new guess, by averaging our current guess
and this new ratio. And we continue.

Slide 1.1.14
Eventually we get a value for the guess that is close enough,

and we stop. Notice how this "algorithm" describes a sequence

of steps to follow to deduce some new information from a set of

facts. It tells us "how to" do something.

Compare this with the case of the declarative or "what is"

version. It simply told us how to recognize a square root if we

saw one, but nothing about how to find one.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 1.1.15
So what we have seen is that imperative and declarative
knowledge are very different. One captures statements of fact;
the other captures methods for deducing information. It is easy
to see why the latter is more interesting. For example, one could
in principle imagine trying to collect a giant listing of all
possible square roots, and then simply looking up a square root
when you need it. Much more convenient is to capture the
process of deducing a specific square root as needed. Thus, we
are primarily interested in "how to" knowledge -- we want to be
able to give the computer instructions to compute a value, and
this means we need a way of capturing the "how to" knowledge.
In particular, we want to describe a series of specific,
mechanical steps to be followed in order to deduce a particular value associated with some problem, using a
predefined set of operations. This "recipe" for describing "how to" knowledge we call a procedure.

Slide 1.1.16
When we want to get the computer to actually compute a value,
that is, use the "how to" knowledge to find the value associated
with a particular instantiation of the problem, we will evaluate
an expression that applies that procedure to some values. The
actual sequence of steps within the computer that cause the
"how to" knowledge to evolve is called a process. Much of our
focus during the term will be in understanding how to control
different kinds of processes by describing them with
procedures.

Slide 1.1.17
Now we want to create tools that make it easy for us to capture
procedures and describe processes, and for that we will need a
language. Whatever language we choose to use to describe
computational processes, it must have several components.
First, it will have a vocabulary -- a set of words on which we
build our description. These will be the basic elements of
computation, the fundamental representations of information
and the fundamental procedures that we use to describe all
other procedures.
Second, it will have a set of rules for legally connecting
elements together -- that is, how to build more complex parts of
a procedure out of more basic ones. This will be very similar to
the syntax of a natural language.
Third, it will have a set of rules for deducing the meaning associated with elements of the description. This will be
very similar to the semantics of a natural language.
And finally, we will need standard ways of combining expressions in our language together into a sequence of
steps that actually describe the process of computation.
We will see is that our language for describing procedures will have many of the same features as natural
languages, and that we will build methods for constructing more complex procedures out simpler pieces in natural
ways.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 1.1.18
One of the things we will see is that it does not take long to
describe the rules for connecting elements together, nor to
describe the rules for determining meanings associated with
expressions in our language of procedures.
Our real goal is to use this language of procedures and
processes to help us control complexity in large systems -- that
is, to use the language and its elements to design particular
procedures aimed at solving a specific problem. We will spend
much of the term doing this, both from scratch, and by looking
at examples from existing procedures.

Slide 1.1.19
In order to capture imperative knowledge, we are going to
create languages that describe such processes. This means we
will need to specify a set of primitive elements -- simple data
and simple procedures, out of which we will capture complex
procedures. We will also need a set of rules for combining
primitive things into more complex structures. And once we
have those complex structures, we will want to be able to
abstract them -- give them name so that we can treat them as
primitives.

Slide 1.1.20
We will see, as we go through the term, that this cycle of
creating complex processes, then suppressing the details by
abstracting them into black box units, is a powerful tool for
designing, maintaining and extending computational systems.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 1.1.21
Indeed, that is precisely the goal of understanding computation.
How can we create methodologies that make it easy to describe
complex processes without getting lost in the details? Clearly a
well-designed methodology for thinking about computation
should enable us to build systems that robustly and efficiently
compute results without error, but also should enable us to
easily add new capabilities to the system. Thus, our goal is to
gain experience in thinking about computation, independent of
language details and specifics, in order to control complexity in
large, intricate systems.

Slide 1.1.22
Thus our goal in 6.001 is to use the ideas of "how to"
knowledge, the ideas of describing processes through
procedures, to control complexity of large systems. We don't
just want to write small programs, we want to understand how
the ideas of procedures and their pieces can be used to construct
large systems in well-engineered ways.
This means we need tools for handling complex systems, and
we are going to see a range of such tools, built on the language
of procedures.

Slide 1.1.23
The first tool we will use for controlling complexity is the idea
of an abstraction, a black box, if you like. Take the method we
just described for computing square roots. While it is useful to
know how to do this, one can easily imaging problems in which
one simply wants the square root, and one doesn't care how it is
derived. Imagine creating a black box that captures the idea of
square root -- one simply puts values in the correct slot, and out
come appropriate square roots. This idea of isolating the use of
a procedure from its actual implementation or mechanism is a
central idea that we will use frequently in controlling
complexity of large systems.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 1.1.24
Not only are black boxes a useful tool for isolating components
of a system, they also provide the basis for connecting things
together. A key issue is providing methods for connecting
together basic units into components that themselves can be
treated as basic units. Thus, we will spend a lot of time talking
about conventional interfaces -- standard ways of
interconnecting simpler pieces.
This is much like hooking up parts of a stereo system. One has
standard interfaces by which components can be intertwined,
and this can be done without worrying about the internal
aspects of the components. Similarly in programming, we will
describe conventions for interfacing simpler components to

create new elements that can further be connected together.

Slide 1.1.25
In fact, here are three particular kinds of conventional interfaces
that we will explore in some detail during the term.

Slide 1.1.26
We will see as we go through the term that ideas of capturing
procedures in black box abstractions, then gluing them together
through conventional interfaces will give us considerable power
in creating computational machinery. At some point, however,
even these tools will not be sufficient for some problems. At
this stage, we will generalize these ideas, to create our own
languages specifically oriented at some problem domain. This
idea of meta-linguistic abstraction will provide us with a
powerful tool for designing procedures to capture processes,
especially as we focus on the idea of what it means to evaluate
an expression in a specifically designed language.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 1.1.27
And as a consequence we will see several different mechanisms
for creating new languages -- ones designed for particular
problems, one designed to interface between higher level
languages and the hardware that actually does the work, and
ones that get to the heart of any computer language, by focusing
on the essence of computation -- evaluation of expressions.

6.001 Notes: Section 1.2

Slide 1.2.1
Our goal in this course is to explore computation, especially
how thinking about computation can serve as a tool for
understanding and controlling complexity in large systems. Of
particular interest are systems in which information is inferred
from some set of initial data, whether that is finding other
information on the web, or computing an answer to a scientific
problem, or deciding what control signals to use to guide a
mechanical system.
For such systems to work, they need some process by which
such inference takes place, and our goal is to be able to reason
about that process. In using computation as a metaphor to
understand complex problem solving, we really want to do two
things. We want to capture descriptions of computational processes. And we want to use the notion of a
computational process as an abstraction on which we can build solutions to other complex problems.
We will see that to describe processes, we need a language appropriate for capturing the essential elements of
processes. This means we will need fundamental primitives (or atomic elements of the language), means of
combination (ways of constructing more complex things from simpler ones) and means of abstraction (ways of
treating complex things as primitives so that we can continue this process).

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 1.2.2
So let's begin our discussion of a language for describing
computational processes. To do this, we really need to provide
a definition of, or at least some intuition behind, the idea of a
computational process. In simple terms, a computational
process is a precise sequence of steps by which information (in
the form of numbers, symbols, or other simple data elements) is
used to infer new information. This could be a numerical
computation (e.g. a set of steps to compute a square root, as we
saw earlier), or it could be a symbolic computation (finding a
piece of information on the Web), or some other inference
based on information.
While the computational process refers to the actual evolution

of information in the computation, we also want to be able to capture a description of the actual steps in the
computation, and we refer to this recipe as a computational procedure: a description of the steps in the
computation. Thus, our language will allow us to describe “recipes” and to use these descriptions on particular
instances of problems, that is, will “bake solutions” using the recipes.

Slide 1.2.3
First, we need to understand how we are going to representation
information, which we will use as the basis for our
computational processes. To do this, we need to decide on
representations for numeric values and for symbolic ones.
Let’s start with numbers.
To represent a number, we start with the most atomic element.
Because ultimately we will represent information internally
inside the computer, we will use electronic signals to do so.
These are most conveniently represented by using a high
voltage or current or a low voltage or current to represent
fundamental values. Thus, the most primitive element in
representing a value is a binary variable, which takes on one of
two values: a zero or a one. This variable represents one bit, or binary digit, or information.
Of course, we need to group these bits together to represent other numbers, which we do typically in groupings of 8
bits (a byte) or in groupings of 16, 32, or 48 bits (a word).
Once we have sequences of bits, we can use them not only to represent other numbers, but we can envision
encodings, in which numbers or bit sequences are used to represent characters. And characters can further be
group together to represent symbolic words. Though we won’t worry about it much in this course, there are
standard encoding schemes for using bit sequences to represent characters as well as numbers. Typically the first
few bits in a sequence are used as a tag to distinguish a number from an encoding for a character.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 1.2.4
Now let’s spend a minute thinking about binary representations
for numbers and operations to manipulate them. We said we
could use a sequence of bits to represent a number, for example,
a positive integer. We can identify each place in the sequence
(by convention the lowest order bit is at the right). And we can
weight each bit by a different power of 2, so that we are able to
represent all possible integers (up to some limit based on the
number of bits we are using). Mathematically, we can capture
this in the equation shown on the slide, and this gives us a way
of representing unsigned integers.

Slide 1.2.5
Now what about simple arithmetic operations on binary integer
representations? Well, the rules for addition are just what you
would expect. And we can do standard addition by simply
carrying bits, just as you would in decimal arithmetic. You can
see this by checking the binary addition at the bottom left, and
confirming that conversion of this result to digital form gives
you what is shown on the right.
There are similar rules for binary multiplication.

Slide 1.2.6
One can build on this to create signed integers (using one bit,
typically the highest order bit) to represent the sign (positive or
negative). And can extend this to represent real (or scientific)
numbers, and to represent encodings for characters (using some
high order bits to denote a character, and then using some
standard encoding to relate bit sequences to characters).
The problem is that this is clearly too low level! Imagine trying
to write a procedure to compute square roots, when all you can
think about are operations on individual bits. This quickly gets
bogged down in details, and is generally mind-numbingly
boring. So we need to incorporate a level of abstraction. We

are going to assume that we are given a set of primitive objects,
and a set of basic operations, and we are going to build on top of that level of abstraction to deal with higher-level
languages for computation.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 1.2.7
So we will assume that our language provides a built-in set of
data structures: numbers, characters, and Boolean values (true
or false). And we will assume that our language provides a
built-in set of primitive operations for manipulating numbers,
characters and Booleans. Our goal is to build on top of this
level of abstraction to capture the essence of a computational
process.

Slide 1.2.8
Thus, we are going to first describe our language for capturing
computational processes, and then look at using it to solve
complex problems. In this course the language we are going to
use is called Scheme - a variant of a language called LISP, both
of which were invented here at MIT some time ago.
Everything we write in Scheme will be composed of a set of
expressions, and there is a simple set of rules that tell us how to
create legal expressions in this language. These rules are similar
to the syntax of a natural language, like English. They tell us
the simplest legal expressions, and give us rules for
constructing more complex legal expressions from simpler

pieces.
Similar, almost every expression in Scheme has a meaning or value associated with it. The semantics of the
language will tell us how to deduce the meaning associated with each expression - or, if you like, how to determine
the value associated with a particular computation. In Scheme, with only a few exceptions, we will see that
evaluating every expression results in a value being returned as the associated meaning.
As we build up our vocabulary in Scheme, we will find rules of syntax and semantics associated with each new
type of expression.
Finally, we will also see that every value in Scheme has a type associated with it. Some of these types are simple;
others are more complex. Types basically define a taxonomy of expressions, and relate legal ways in which those
expressions can be combined and manipulated. We will see that reasoning about the types of expressions will be
very valuable when we reason about capturing patterns of computation in procedures.

Slide 1.2.9
As we build up our language, looking at the syntax and
semantics of expressions in that language, we will also see that
these expressions very nicely break up into three different
components. We have primitives - our most basic atomic units,
on top of which everything else is constructed. We have ways
of gluing things together - our means of combination - how to
combine smaller pieces to get bigger constructs. And finally we
have a means of abstraction - our way of taking bigger pieces,
then treating them as primitives so that they can be combined
into bigger constructs, while burying or suppressing the internal
details of the pieces.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 1.2.10
Let’s start with the primitives -- the basic elements. These are
the simplest elements on top of which we will build all our
other computational constructs.
The simplest of these are the self-evaluating expressions, that
is, things whose value is the object or expression itself. These
include numbers, strings and Booleans.
Numbers are obvious, but include integers, real numbers, and
scientific notation numbers.
Strings are sequences of characters, including numbers and
special characters, all delimited by double quotes. These
represent symbolic, as opposed to numeric, data.
Booleans represent the logical values of true and false. These

represent logical, as opposed to symbolic or numeric, data.

Slide 1.2.11
Of course we want more than just primitive objects, we need
ways of manipulating those objects. For example, for numbers
we have a set of built-in, or predefined, procedures. Thus, the
symbol + is a name for the primitive procedure or operation of
addition, and similarly for other arithmetic operations,
including comparison operations.
Strings have an associated set of operations, for comparing
strings or extracting parts of strings.
And Booleans have an associated set of logical operations.
Think of these as abstractions: they are machinery that performs
the operations described by a set of known rules.

Slide 1.2.12
Before we actually show the use of these primitive, or built-in,
procedures, we pause to stress that these names are themselves
expressions. By our earlier discussion, this suggests that this
expression, +, should have a value. This sounds like a strange
thing for many computer languages, but in Scheme we can ask
for the value associated with a symbol or name. In this case, the
value or meaning associated with this built-in symbol is the
actual procedure, the internal mechanism if you like, for
performing addition. In fact our rule for evaluating the
expression, +, is to treat it as a symbol, and look up the value
associated with it in a big table somewhere. Shortly we will see

how that table is created.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 1.2.13
Given numbers and procedures, we want to use them together.
Ideally, we should be able to apply operations like * or + to
numbers to get new values. This leads to means of combination -
our way of constructing larger expressions out of simpler ones.
In Scheme our standard means of combination consists of an
expression that will apply a procedure to a set of arguments in
order to create a new value, and it has a very particular form

Slide 1.2.14
... consisting of an open parenthesis ...

Slide 1.2.15
... followed by an expression whose value, using the rules we
are describing, turns out to be a procedure ...

Slide 1.2.16
... followed by some number of other expressions, whose values
are obtained using these same rules ...

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 1.2.17
... followed by a matching close parenthesis. This form always
holds for a combination.

Slide 1.2.18
So there is the syntax for a combination - an open parenthesis,

an expression whose value is a procedure, some other set of

values, and a close parenthesis.

What about the semantics of a combination? To evaluate a

combination, we evaluate all the sub-expressions, in any order,

using the rules we are developing. We then apply the value of

the first expression to the values of the other expressions.

What does apply mean? For simple built-in procedures, it just

means take the underlying hardware implementation and do the

appropriate thing to the values, e.g. add them, multiply them,

etc.

Slide 1.2.19
This idea of combinations can be nested arbitrarily. We can use
a combination whose parts are themselves combinations, so
long as the resulting value can legally be used in that spot. To
evaluate combinations of arbitrary depth, we just recursively
apply these rules, first getting the values of the sub-expressions,
then applying the procedure to the arguments, and further
reducing the expression.
So, for example, to get the value of the first expression, we get
the values of + (by lookup), and 4 because it is self-evaluating.
Because the middle subexpression is itself a combination, we
apply the same rules to this get the value 6, before completing
the computation.

6.001 Notes: Section 1.3

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 1.3.1
So far we have basic primitives -- numbers, and simple built-in
procedures, and we have means of combination -- ways of
combining all those pieces together to get more complicated
expressions. But at this stage all we can do is write out long,
complicated arithmetic expressions. We have no way of
abstracting expressions. We would like to be able to give some
expression a name, so that we could just refer to that name (as
an abstraction) and not have to write out the complete
expression each time we want to use it.

Slide 1.3.2
In Scheme, our standard way for doing that is to use a particular
expression, called a define. It has a specific form, an open
parenthesis (as before), followed by the keyword define,
followed by an expression that will serve as a name (typically
some sequence of letters and other characters), followed by a
expression whose value will be associated with that name,
followed by a close parenthesis.

Slide 1.3.3
We say that this expression is a special form, and this means it
does not follow the normal rules of evaluation for a
combination. We can see why we want that here. If we applied
the normal rules for a combination, we would get the value of
the expression score and the value of 23, then apply the define
procedure. But the whole point of this expression is to associate
a value with score so we can't possibly use the normal rules to
evaluate score.
So instead, we will use a different rule to evaluate this special
form. In particular, we just evaluate the last sub-expression,
then take the name without evaluating it (score in this case) and
pair that name together with the deduced value in a special
structure we call an environment. For now, think of this as a big table into which pairings of names and values can
be made, using this special define expression.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 1.3.4
Because our goal is to associate a name with a value, we don't
actually care what value is returned by the define expression,
and in most Scheme implementations we leave that as
unspecified.
Thus, our means of abstraction gives us a way of associated a
name with an expression, allowing us to use that name in place
of the actual expression.

Slide 1.3.5
Once we have the ability to give names to values, we also need
the ability to get the value back out. And that's easy. To get the
value of a name in Scheme, we simply lookup the pairing of the
name in that table we created. Thus, if we evaluate the
expression score we simply lookup the association we made
when we defined score in that table, in this case, 23, and return
that value.
Notice that this is exactly what we did with built-in primitives.
If we give the name + to Scheme, it looks up the association of
that symbol, which in this case is the built in addition
procedure, and that procedure is actually returned as the value...

Slide 1.3.6
... and of course now we can use names in any place we would
have used it's associated expression.
In the example shown here, we can define total to have the
value of the subexpression, and by our previous rules, we know
that this reduces to 25. Now if we evaluate the last expression,
our rules say to first evaluate the subexpressions. The symbol *
is easy, as is the number 100. To get the value of the last sub-
expression, we recursively apply our rules, in this case looking
up the value of score, and the value of total, then applying the
value of / to the result, and finally, applying the multiplication
operator to the whole thing.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 1.3.7
Notice that this creates a very nice loop in our system. We can
now create complex expressions, give them a name, and then
by using that name, treat the whole expression as if it were a
primitive. We can refer to that expression by name, and thus
can write new complex expressions involving those names, give
the resulting expression a name, and treat it is a new primitive,
and so on. In this way, we can bury complexity behind the
names, and create new primitive elements in our language.

Slide 1.3.8
So here is a summary of the rules of evaluation we have seen so
far.

Slide 1.3.9
Because these ideas of evaluation are important, let's take
another look at what happens when an expression is evaluated.
Remember that our goal is to capture computation in
expressions, and use those expressions to compute values. We
have been describing both the forms of expressions, and how
one deduces values of expressions. When we consider the
second stage, we can separate out two different worlds, or two
different ways of looking at what happens during evaluation.
One world is the visible world. This is what we see when we
type an expression at the computer and ask it to perform
evaluation, leading to some printed result. Below that world is
the execution world. This is what happens within the computer (we'll see a lot more details about this later in the
term), including both how objects are represented and how the actual mechanism of evaluation takes place. We
want to see how these two worlds interact to incorporate the rules of semantics for determining values of
expressions.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 1.3.10
When an expression is entered into the computer from our
visible world, it is first processed by a mechanism called a
reader, which converts this expression into an internal form
appropriate for the computer.

Slide 1.3.11
That form is then passed to a process called an evaluator. This
encapsulates our rules for evaluation, and reduces the
expression to its value.

Slide 1.3.12
Note that this may involve a recursive application of the
evaluation rules, if the expression is a compound one, as we
saw with our nested arithmetic expressions.

Slide 1.3.13
And the result is then passed to a print process, which converts
it into a human readable form, and outputs it onto the screen.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 1.3.14
Suppose, for example, we type the expression 23 into the
computer, and ask for its value. The computer basically
recognizes what type of expression this is (self-evaluating in
this case) and therefore applies the rule for self-evaluating
expressions. This causes the expression to be converted into an
internal representation of itself, in this case some binary
representation of the same number. For self-evaluating
expressions, the value is the expression itself, so the computer
simply returns that value to the print procedure, which prints
the result on the screen for us to see.

Slide 1.3.15
A second kind of primitive object is a name for something,
typically created by evaluating a define expression. Remember
that such a define created a pairing of a name and a value in a
structure we call an environment. When we ask the computer to
evaluate an expression such as pi, it recognizes the type of
expression (a name), and applies the name rule. This causes the
computer internally to find the pairing or association of that
name in the environment, and to return that value as the value
of the expression. This gets handed to the print procedure,
which prints the result on the screen. Note that the internal
representation of the value may be different from what is
printed out for us to see.

Slide 1.3.16
What about special forms? Well, the first one we saw was a
define. Here the rules are different. We first apply our
evaluation rules to the second sub-expression of the define.
Once we have determined that value, we then take the first
subexpression (without evaluation) and create a pairing of that
name and the computed value in a structure called an
environment.
Since the goal of the define expression is to create this pairing,
we don't really care about a value of the define expression
itself. It is just used for the side effect of creating the pairing.
Thus, typically we leave the value returned by a define

expression as unspecified.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 1.3.17
So let's see what happens in our two worlds view. Suppose we
type in a define expression and evaluate it. What happens?

Slide 1.3.18
Here's an example. The evaluator first identifies the type of
expression, in this case by recognizing the key word define at
the beginning of the compound expression. Thus it applies the
rule we just described.

Slide 1.3.19
As we saw, the evaluator now takes the second sub-expression
and evaluates it, using the same rules. In this case, we have a
number, so the self-evaluation rule is applied. That value is then
paired with the name, or first sub-expression, gluing these two
things together in a table somewhere (we don't worry about the
details of the table or environment for now, we'll discuss that in
detail later in the term). As noted, the actual value of the define
expression is not specified, and in many Scheme
implementations we use a particular, "undefined", value.

Slide 1.3.20
As a consequence, the value that gets returned back up to the
visible world may vary in different implementations of Scheme.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 1.3.21
Most versions of Scheme will show us some information about
what binding was just created, but in general, we will not rely
on this, since it does vary with implementations of Scheme.

Slide 1.3.22
These rules hold for any expression. If we just have a simple
combination involving a built-in arithmetic procedure, we know
that we get the values of the other sub-expressions (using the
self-evaluation rule), then apply the value associated with the
symbol + to those values, thus executing an addition operation.

Slide 1.3.23
But suppose we do something strange, like this. Our rule for
defines says that we get the value associated with + and bind it
together with the name fred in our environment. Remember
that + is just a name, so we use our name rule to find its value,
which is in fact the actual internal procedure for addition.

Slide 1.3.24
Now, let's apply fred to some arguments. Notice that this just
appears to do addition.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 1.3.25
Is that really right?

Yes it is, and let's think about why.

Slide 1.3.26
Well, our rules really explain this. The define expression says
to pair the name fred with the value of +. Note that + is just a
name, it happens to be one that was created when Scheme was
started. Its value, we saw, is a procedure, the internal procedure
for addition. Hence, the define expression creates a binding for
fred to addition.
Thus, when we evaluate the combination, our rule says to get
the values of the sub-expressions, and hence the name fred is
evaluated using the name rule, to get the addition procedure.
This is then applied to the values of the numbers to generate the
displayed result.

Slide 1.3.27
As an example, if I ask for the value associated with one of
these built-in names, my rules explain what happens. Since this
is a name, its value is looked up in the environment. In this
case, that value is some internal representation of the procedure
for multiplication, for example, a pointer to the part of the
internal arithmetic unit that does multiplication. That value is
returned as the value of this expression, and the print procedure
then displays the result, showing some representation of where
the procedure lies within the machine. The main issue is to see
that this symbol has a value associated with it, in this case a
primitive procedure.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 1.3.28
Thus what we have seen so far is ways to utilize primitive data
and procedures, ways to create combinations, and ways to give
names to things. In the next section, we will turn to the idea of
capturing common patterns in procedures.

	Local Disk
	6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

