6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

6.001 Notes: Section 16.1

Slide 16.1.1

Last time, we completed building our evaluator. And as you
saw, we slightly misled you. We started off saying we were
going to user Scheme's lexical analyzer and parser, but then
build our own evaluator, which we did initially for arithmetic
expressions, then for defines, then for applications, and
eventually we ended up with something that basically looked
like Scheme's evaluator, written in Scheme!

Today, we are going to build on that idea, by examining the
actual Scheme evaluator. We will run through a quick, but
grand tour of the full evaluator, looking at several key ideas.
First, remember that we are basically describing the process of
evaluation, which in our case means making the environment
model a concrete set of procedures. Second, the essential message is that by defining the process of evaluation, we
are also defining our language. This means that the evaluator design then provides the basis on which we can create
abstractions, especially procedural abstractions, as it provides the mechanism for unwinding the abstraction back
down to primitive pieces when we want to get an actual value. And finally, given that designing an evaluator is
essentially equivalent to defining a language, we are going to look at how variations in a Scheme evaluator can

lead to very different language behavior.

Building up a language...

1.
eval/apply
core

Building up a language...

7 eval/apply
core

environment
manipulation

4.
primitives and

initial env.

@
| | H

read-eval-print
4 loop

LA

2.
syntax
procedures

240

Slide 16.1.2

To do this, we are going to have to look at several different
parts of the language design. We will start with the core of
eval andappl vy, then look at how we support the syntax

of the language, how we create and manipulate the
environments that let us look up values that are associated with
that syntax, and then how primitives are installed into the initial
or global environment. Finally, we will put together the overall
infrastructure for letting a user interact with the evaluator, and
we will see all of these pieces as we quickly walk through our
full evaluator.

As with previous lectures, there is a code handout that goes

with this lecture, and we suggest you print out a copy and have it available as we walk through our discussion.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 16.1.3

Let's start with the heart of the interpreter. We have already
seen this with our simple interpreter from the last lecture. The
essence of the evaluator is a tight loop, in which the evaluation
of an expression with respect to an environment reduces in the
general case to an application of a procedure to a set of
arguments. This in turn generally reduces to an evaluation of a
simpler expression (the body of the procedure) with respect to a
new environment (one in which the formal parameters of the
procedure have been bound to the arguments passed in).

This loop continues, unwinding expressions, until it reaches the
application of a primitive procedure to primitive values or the
evaluation of a primitive data object.

Slide 16.1.4

The Core Evaluator 1.
eval/apply
core
Eval

exp &
env & args

Apply
+ Core evaluator

+ eval: dispatch on expression type
= apply: eval args then apply operator

420

Slide 16.1.5
So here is our implementation of eval . Notice its form. First,

it is a dispatch on type, so it checks the expression to figure out
which type matches. Once it does, it sends the expression to a
procedure specific to that type. Notice that we are assuming a
data abstraction for checking types. We are not making any
assumptions about how types are represented, but are rather
using a set of procedures to check each type. This will allow us
to cleanly add to or alter our types, without having to change
the evaluator directly.

The Core Evaluator 1.
eval/apply
core
Eval

exp & proc
env & args

Apply

Our convention is that we will use an eval that does dispatch

on type. Thus, it checks the expression type, and based on that,
proc sends the expression to a procedure designed to handle that type
of expression. Our convention on appPI Y is that it will first

evaluate the arguments, and then apply the procedure that is the
value of the first argument to the values of the others.

Meval

{define (meval exp env)
(cond ((self-evaluating? exp) exp)
{ (variable? exp) (lookup-variable-value exp env))
{ (quoted? exp) (text-of-quotation exp))
{(assignment? exp) (eval-assignment exp env))
{(definition? exp) (eval-definition exp env))
{(if? exp) {eval-if exp env))
{ (lambda? exp)
(make-procedure (lambda-parameters exp)
(lambda-body exp)
env))
{ (begin? exp) (eval-sequence (begin-actions exp) env))
{(cond? exp) (eval (cond->if exp) env))
{ (application? exp)
(mapply (meval (operator exp) env)
(list-of-values (operands exp) env)))
(else (error "Unknown expression type —— EVAL™ exp))))

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 16.1.6
Meval Notice the order in which we check things in eval . We first
O e start out by checking for primitives, things like self-evaluating

i he AL (P AT expressions, or variables. These are easy things to deal with.

(assignment? exp) (eval-assignment exp env))

{(definition? exp) (eval-definition exp env))}

((if? exp) (eval-if exp env))

{ (lambda? exp)

(make-procedure {lambda-parameters exp)

(lambda-body exp)

{ (begin? exp) (ev:ili,s)(:quence (begin-actions exp) enwv))

{(cond? exp) (eval (cond->if exp) env))

{(application? exp)

(mapply (meval (operator exp) env)

(list-of-values (operands exp) env)))
{else (error "Unknown expression type —-- EVAL™ exp))))
4 620
Slide 16.1.7 i
Next, we check out the special forms. Remember that this is an Cetine (et)
. . efine (meval exp env
expression that does not follow the normal rules of evaluation (ecod TTeTTovaTmermyy mp]
. . . . vari. e? exp ookup-vari. e-value exp env
for compound expressions. These are things like assignment or (quotedr exp) (text-of-quotation cxp))
{ (assignment? exp) (eval-assignment exp env))

{(definition? exp) (eval-definition exp enwv))

{(if? exp) {eval-if exp env))

{ (lambda? exp)

(make-procedure (lambda-parameters exp)
(lambda-body exp)

definition, in which we only want to evaluate one of the
subexpressions, or things like 1 T , where we know we want to

evaluate in a different order. Each of these expressions we will
treat separately, with a specific procedure to deal with that kind

env))
{ (begin? exp) (eval-sequence (begin-actions exp) env))
d? exp) (eval (cond->-if exp) env))
{ (application? exp)

of expression. We've added a couple of new ones, and we will D e o o o
come back to those shortly. The issue to note is that this section felse ferromtinkaam sxpression g soSvAlT epiiy
deals with all the special forms. 4
Meval Slide 16.1.8
ot ot) Finally, we get to an application. This is the case where we are
efine meva. axp env . . .
S it i . R treating an expression that has a set of subexpressions that we
fiotedn cip) (iost ot auotation eas)) will evaluate, then apply the operator (or value of the first
(ass%g'l:lm?nt? exp) (eval—ass%g't?lnent exp env)) .
L e i P s subexpression) to all the rest of them. We have left
e TSRS S appl i cat i on? asan abstraction to check if something
(lambda-body exp) . . . - -
_ envl} o is an application, but as you saw with our earlier evaluators,
{ (begin? exp) (eval-sequence (begin-actions exp) enwv)) . R . . . R .
LSRR S5) S most likely we will just make sure this is a combination,
S Mol sl b (U meaning we will assume that if the expression is a compound

(else (orror Mnknown expression type — EALT exe)))) | expression but not a known special form, then it must be an
4 application.

Slide 16.1.9

In general, however, we see that our evaluator has exactly the
kind of form that we slowly evolved in our previous examples.
Given an expression and an environment, @val will check

the type of the expression, using some abstractions that we will
get to, to see if it is a primitive, or if it is a special form, or
ultimately if it is an application. In each case, eval

dispatches that expression to a specific procedure. We have
already seen many of these pieces. We know that for variables,
we should just look up the value of the variable in the
environment. We know that for quoted expressions, we should
simply grab the expression as tree structure and return it.
Similarly for the special forms: a definition should create a new

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Meval

(define (meval exp env)

(cond[{ {sell-evaluating? exp) exp}
(variable? exp) (lookup-variable-value exp env))
(quoted? exp) (text-of-quotation exp))

(assignment? exp) (eval-assignment exp env))
{(definition? exp) (eval-definition exp env))
((if? exp) (eval-if exp env))
{ (lambda? exp)
(make-procedure {lambda-parameters exp)
(lambda-body exp)
env))
{ (begin? exp) (eval-sequence (begin-actions exp) enwv))
{(cond? exp) (eval (cond->if exp) env))

[T{application? exp)
(mapply (meval (operator exp) env)
(list-of-values (operands exp) env)))
{else (error "Unknown expression type —— EVAL"™ exp))))

4 20

binding for a name and a value in the environment; an if should change the order of evaluation of the

subexpressions.

For an application, we should evaluate the first subexpression (the operator), then evaluate all the other

subexpressions, and apply that operator to that list of values. Notice that | have slightly misled you because we
don't have to assume that the operator is the first subexpression. Qper at or is simply some data abstraction

that will get the appropriate subexpression but it could in fact be some piece other than the first or leftmost one.

Basic Semantics: meval & mapply

* primitive expressions
—self-evaluating, quoted

= variables and the environment
—variable definition, lookup, and assignment

= conditionals
—if, cond

* procedure application

* sequences
—begin

10

Slide 16.1.11

Slide 16.1.10

Here is a quick synopsis of what we see on that evaluator. It
dispatches on type: first for primitives, either self-evaluating
things or things that should not be evaluated; then for
expressions that deal with variables and their manipulation
within the environment (creating, looking up, or changing
values of variables); then for conditionals, ways of branching
depending on the value of an expression; then procedure
application.

Note there are several new forms here that we will have to
define: quoted objects, cond, and begin. Let's take a look at
some of these.

Side comment — procedure body

In our evaluators from the previous lectures, when we applied a
procedure to a set of arguments, we saw that reduced to simply
evaluating the body of the procedure with respect to a new
environment. Evaluation of the body was simply a case of using
eval on that expression, and that was because we assumed

the body was just a single expression. Before we introduced
mutation into our language, this made perfect sense, because
the value of the body would be the value of the last expression
in it, and it only made sense to have one expression, since any
other expression's value in a body would be lost.

Once we have mutation, however, expressions can do things

+ The procedure body is a sequence of one or more
expressions:

{define (foo x)
(do-something (+ x 1))
(* x 3))

* Inm-apply, we eval-sequence the procedure body.

11

other than return values: they can create side effects. So a generalization for an evaluator is to let the body of a
procedure be a sequence of one or more expressions. That is shown here, in which we define f 00 to be a

procedure whose body has two expressions. The first does something, probably a side effect, and the second of

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

which computes and returns a value.

We still have to figure out how to do evaluation of a sequence (we'll get to that in a second) but given the idea that
evaluating a sequence could take a series of expressions, evaluate them in order and return the value of the last one,
we can now let bodies have multiple expressions, and inside of apPl Yy we can generally evaluate the body as a

sequence, not a single expression.

Mapply Slide 16.1.12
Thus, our appl Yy, our way of dealing with applications of
eond (immimitve: proaducas peostcuze) procedures to arguments, will be slightly different. As before, it
(apply-primitive-procedure procedure arguments)) - - . - . - -
((compound-procedure? procedure) will have a way of dealing with primitive procedures, in this
(eval-sequence . - - - -
(procedure-body procedure) case just sending the expression to the underlying machine
(extend-environment (procedure-parameters procedure) . - . . .
arguments primitive. For compound procedures (application of something

(procedure-environment procedure))))

telse (error mnknomn procedure type — mepnr~ procedure’) e built using a | armbda), we make a slight change. We still

create a new environment, binding the parameters of the
procedure (obtained using the appropriate data abstraction) to
the values of the arguments in a frame that extends the

¢ o environment specified by the procedure object. Within this new
environment, we will evaluate the body of the procedure, but
notice here we will evaluate it as a sequence, not as a single expression. Thus, we will treat the body as a set of
expressions, evaluate each one in order, and then return the value of the last one as the value of the entire
application.

With that, we now see the intertwining of eval and appl V. Let's take a look at some of the specific pieces.

S!ide 16.1.13 . . L Pieces of Eval&Apply
First, self-evaluating expressions. Remember that € X0 iS just @ | aerine (naval exp envs

(cond k(selffevaluatj_nq? exp) exp) |

tree structure, and in this case, we simply return that tree ((variable7 exp] {lookup-variable-value exp env))
i R { (quoted? exp) (text-of-quotation exp))
{(assignment? exp) (eval-assi¢gnment exp env))
structure directly. Thus numbers get returned without any ol twioes (e soiaias b
additional work. o o

(make-procedure (lambda-parameters exp)
(lambda-body exp)
env))
{(begin? exp) (eval-sequence (begin-actions exp) env))
{ (cond? exp) (eval (cond->if exp) env))
{ (application? exp)
(mapply (meval (operator exp) env)
(list-of-values (operands exp) enwv)))
{else (error "Unknown expression type —- EVAL™ exp))))

(E 1360
Pieces of Eval&Apply Slide 16'1'14 L . T
Bl el epsersl If an expression is just a variable (a symbol) we will just look
‘°°“E§Efff;f;’i‘ L up that variable's value in the environment, and we'll deal with
e e R R LT e details of that shortly.

{(definition? exp) (eval-definition exp env))}
((if? exp) (eval-if exp env))
((lambda? exp)
(make-procedure (lambda-parameters exp)
(lambda-body exp)
env))
{ (begin? exp) (eval-sequence (begin-actions exp) env))
{(cond? exp) (eval (cond->if exp) env))
{ (application? exp)
(mapply (meval (operator exp) env)
(list-of-values (operands exp) env)))
(else (error "Unknown expression type -- EVAL™ exp))))

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 16.1.15
Next, let's skip down to procedure applications. With our Pieces of Eval&Apply
change, we can see that the evaluator gets the value of the e
operator by recursively evaluating that subexpression, then gets e o e e oxp o]
a list of values of the other expressions (note that we explicitly Fodemlei e el o
require a list here) by evaluating each piece in turn and b ol s
constructing a list. Note, however, that our data abstraction S s o)
isolates the issue of the order of the arguments from our Ut VAT e RS S0 &P
. - . . {(cond? exp) (eval (cond->if exp) env))
evaluator. We don't know if the operator is the first expression i
in thi il si O b en foper s sy sy
or not in this case. Qper at or will simply select out conoe ieboalne (pends ex))]
whatever we decide on in terms of syntax for our language.
And as we saw, apPp| y will now evaluate the sequence of < v
expressions that it assumes the body contains.
Pieces of Eval&Apply Slide 16'1'16 . .
i Biumetamedi' camrond What about | f s? We know thatan i f expression should take
(o | (esir avatistingd S5 gl .) .
e) Loy o o = o) a set of expressions, evalugte the first sub_expressmn (or rather
ol lora g e b) we are assuming it is the first subexpression) and then
IO T depending on that value, either evaluates the consequent or the
R ™ alternative.
{ (begin? exp) (evaeilys);quence (begin-actions exp) env))
{(cond? exp) (eval (cond->if exp) env))
application? exp])
I_F:m_apply (meval (operator exp) env)
{list-of-values {operands exp) env)))
{else (error "Unknown expression type —- EVAL™ exp))))
Q 1640
Slide 16.1.17 Pieces of Eval&Apply

And what about begi Ns? Remember that a sequence is either | erime meva exp oy

i ; . . b . . (cond [(self-evaluating? exp) exp) |

variable? e lookup-variable-value exp env
something identified by an explicit D€gl N statement or is Clvariahled omp) {lodkup varishle-value xp el
((assignment? exp) (eval-assi¢gnment exp env))

used as the body of a procedure, as we just saw. In this case, we ((definition? exp) (eval-definition exp env))
- | {(if? exp) {eval-if exp enwv))
want to extract the set of expressions, and evaluate them. We (Clambazr oy~ .)
. - . make-procedure al a-parameters exp
use the following trick, shown on the next slide. i b

{ (begin? exp) (eval-sequence (begin-actions exp) env))
'((cond"iJ exp) (éval (condfﬁif' exp‘) env)"j
{(application? exp)
(mapply (meval (operator exp) env)
list-of -values {operands e env,
{else (error "Unknown expression type —— EVAL™ exp))))

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Pieces of Eval&Apply

(define (eval-sequence exps env)
{cond ((last-exp? exps) (meval (first-exp exps) env))
(else (meval (first-exp exps) env)
(eval-sequence (rest-exps exps) enw))))

(define (eval-assignment exp env)
{set—variable—value! (assignmment-variable exp)
(meval (assignment-wvalue exp) exp)
env))

(define (eval-definition exp env)
{define-variable! (definition-variable exp)
(meval (definition-value exp) enwv)
env))

180

Slide 16.1.19

Expressions like definitions and assignments either create or
change existing bindings of variables and values in the

Slide 16.1.18

Our plan is to evaluate each of the expressions in order. When
we get to the last one, we should return its value as the value of
the entire sequence. We will bury some of the details behind
data abstractions, but we can see the general form for
evaluating a sequence. If we have the last expression, we will
simply evaluate it and return the value. If it is not, we evaluate
it, then recursively walk down the sequence and do the same
thing.

Pieces of Eval&Apply

(define (eval-sequence exps env)
{cond ({last-exp? exps) (meval (first-exp exps) env))
(else (meval (first-exp exps) enw)

environment. Notice the form, however. In both cases, we get
out the part of the expression that corresponds to the new value,
and actually evaluate it, by recursively applying meval toit.

We simply get out the part of the expression that corresponds to
the variable as a tree structure manipulation, however, without

(eval-sequence (rest-exps exps) env))))

(define (eval-assignment exp env)
{set-variable-value! (assigmment-variable exp)
(meval (assignment-value exp) env)
env))

(define (eval-definition exp env)
{define-variable! (definition-variable exp)
(meval (definition-value exp) enwv)
env))

evaluation. Then we do the appropriate manipulation of the

environment.

Notice how by using data abstractions we have not specified q "
what order the expressions will take. While we will eventually

decide that, from the perspective of this code, any change in that order will not affect the evaluation process.

Pieces of Eval&Apply

(define (eval-sequence exps env)
{cond ((last-exp? exps) (meval (first-exp exps) env))
(else (meval (first-exp exps) env)
(eval-sequence (rest-exps exps) enw))))

(define (eval-assignment exp env)
(set-variable-value! (assignment-variable exp)
(meval (assignment-wvalue exp) exp)
env))

(define (eval-definition exp env)
{define-variable! (definition-variable exp)
(meval (definition-value exp) enwv)
env))

20

Slide 16.1.20
So there is the whirlwind tour of eval and appl y. we

have buried some details behind some data abstractions, which
we will address shortly. The part that you see here really is the
heart of evaluation.

The essence of the evaluator is a tight loop, in which the
evaluation of an expression with respect to an environment
reduces in the general case to an application of a procedure to
a set of arguments. This in turn generally reduces to an
evaluation of a simpler expression (the body of the procedure)
with respect to a new environment (one in which the formal
parameters of the procedure have been bound to the arguments

passed in), while inheriting values from other environments.

6.001 Notes: Section 16.2

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 16.2.1
So what have we done so far? Basically we have defined the Syntactic Abstraction P,
semantics of our language. By defining eval and appl y « Semariics procedures

* What the language means
+ Model of computation

we have specified what the language means and the model of

computation we are going to use. Notice that we have done this | Eyribas

in terms of data abstractions. Everything we have used to pull < Parliedarsisbwrilingexpressions
out list structure from expressions has used an abstraction. * E:g.how to:signal dfierent expressions
There are no car s and cdr s anywhere in the code so far. + Separation of syntax and semantics:

allows one to easily alter syntax

This is important, because we have separated the syntax of the
language from the semantics of the language. But eventually we <:>
do need to focus on the syntax, the details of how we write
legal expressions in our language. This will force us to specify
things like how to identify kinds of expressions, and the order
of arguments. At the same time, this separation of syntax from semantics is extremely useful, as it allows us to very
easily change the syntax without having to change the actual evaluator. We simply change the interface to the
abstractions. We are now going to examine this issue, by looking at details of implementing the abstractions and by
looking at changes to that abstraction.

BusicSyrifa Slide 16.2.2 . o
o . The second page of the code handout contains all of this in
» Routines to detect expressions . . B . .
(define (tagoed-list? exp tag) much more detail. Here we will simply highlight some of the
fand fpaix? sl fogt foax o) Bl key issues in syntax.
e e e i e First, we need a set of routines to detect different kinds of
(define (application? expl (paiz? exp)} expressions. An easy way to do this is to have each one of them
check to see if it is a "tagged" list. So, for example, I T ? will
check to see if the expression is a list, that is something
constructed out of CONS pairs. It will then check to see if the
first element of that list is the symbol I f . Ditto for | anbda.
¢ For application, we will use a slightly different form. We will

assume that anything that has not been caught by one of the tag
checkers for a special form but is in fact a list of expressions, we can treat as an application. This means that we
may get into some trouble but it is the easiest way of allowing us to generalize to having any kind of procedure
applied to any set of expressions as long as that procedure was created using our | anbda.

Slllde 16-2-3 Basic Syntax
Given that we can detect different kinds of expressions and ship _ _
* Routines to detect expressions

them off to the procedures that handle them, those procedures (define (tagged-list? exp tag)

- . - - {and (pair? exp) (eq? {car exp) tag)))
will also need to have ways of getting information out of P e s
expressions. They will have to have ways of pulling out pieces (define (if? exp) (tagged-list? exp 'if})

. . . (define (lambda? exp) (tagged-list? exp "lambda))

by walking down the list structure. So, for example, if we have (define (application? exp) (paiz? exp)}
an appllcatlonv We need a Way Of _gettmg out the Oper_atorv and . Rot._ltines to get information out of expressions
the other expressions. Here we will assume that the first et o il b v e
subexpression is the operator, so we use Carl to get it out of
the expression. And we will assume that operands is a list of all
the remaining expressions, so we use CAr to get that part. Of p

course we could have made a different design choice, as we
will see. The key point is that we now have an abstraction that pulls out pieces to pass on to the evaluator.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Basic Syntax

* Routines to detect expressions
(define (tagged-list? exp taqg)
{and (pair? exp) (eq? {(car exp) tag)))

(define (if? exp) (tagged-list? exp 'if))
(define (lambda? exp) (tagged-list? exp 'lambda))
(define (application? exp) (pair? exp))

* Routines to get information out of expressions
(define (operator app) {(car app))
(define (operands app) (cdr app))

* Routines to manipulate expressions

(define (no-operands? args) (null? args))
(define (first-operand args) (car args))
(define (rest-operands args) (cdr args))

4 Iz

Slide 16.2.4

And we will need routines that manipulate expressions, that is,
walk along the expressions finding pieces. For example, if we
are applying a procedure to a set of arguments, we need to get
out different parts of the argument list. So we will have
something to check if there are arguments, something to get the
next operand, and something to get the other operands. This is
just list structure that we are manipulating. Notice that we have
made an explicit choice about order, assuming the operands are
arranged in a left-to-right ordering.

Overall, our syntax (see page 2 of the code) is defined by a set
of expressions to deal with the list structure that is passed in to

the evaluator. These procedures walk down the list structure to
test for kind of expression, to get out pieces or otherwise manipulate that list structure.

Slide 16.2.5

The rest of the code on page 2 of the handout just fills out the
rest of the details of the syntax, the representation of
expressions. Look it over to be sure you understand it, but it is
basically the same sort of material: tagged lists for identifying
types, list operations (car and cdr) to get out pieces.

As we said earlier, one of the reasons for using data
abstractions everywhere within eval is to let us separate the

syntax from the semantics. Eval and appl y define the

semantics, how expressions get their values in this language.
The syntax tells us how to write legal expressions in this <
language. By doing that separation, we can make changes to the

Example — Changing Syntax

syntax without affecting the semantics. Here is one such example.

Example — Changing Syntax
» Suppose you wanted a "verbose" application syntax:

(CALL <proc> ARGS <argl>» <arg2> ...)
for example -- {CALL (lambda (x) (* x x) ARGS 5)

Slide 16.2.6

Suppose | decide that rather than having the convention that the
operator is the first subexpression of a combination, and the
operands are all the other subexpressions, instead | want to be
much more verbose. | might want expressions like the one
shown here, explicitly identifying the procedure and the
arguments. How would I make this change to my language?

Slide 16.2.7

We have already hinted at the answer. All we need to do is
change the syntax. For example, now checking to see if
something is an application involves looking to see if the first
element of the list is the special symbol CALL. This is clearly

different from our earlier version, where we assumed any
combination that was not a special form was an application.

Here, we are explicitly identifying applications.

Example — Changing Syntax

(CALL <proc> ARGS <argl> <arg2> ...}
for example -- (CALL (lambda (x) (* x x) ARGS 5)

» Changes — only in the syntax routines!

{define (application? exp) (tagged-list? 'CALL))
{define (operator app) {(cadr app))
(define (operands app) (cdddr app))

* Suppose you wanted a "verbose" application syntax:

Slide 16.2.9

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Example — Changing Syntax
+ Suppose you wanted a "verbose" application syntax:

(CALL <proc> ARGS <argl> <arg2> ...)
for example -- (CALL (lambda (x) (* x x) ARGS 5)

* Changes — only in the syntax routines!

{(define (application? exp) (tagged-list? 'CALL))
(define (operator app) (cadr app))
(define (operands app) {cdddr app))

Slide 16.2.8

So how do I get out the pieces? Before, we would have gotten
the operator as the first subexpression, here it is the second
subexpression, since the first subexpression is the symbol
CALL. And for the operands, we have to skip past the ARGS

to get the right parts. Again, the key point: all | have changed is
the syntax, the routines that walk down the tree structure and
pull out the pieces. Nothing has changed in eval or

apply.

Implementing "Syntactic Sugar"

The second reason for separating syntax from semantics is that
it allows us to easily accommaodate alternative forms for
expressions. We often call this "syntactic sugar", meaning that
it looks nicer, but it actually just coats the same underlying
idea, with a sweeter way of expressing the same thing. Let me
show you an example. Remember | et ?

We could treat | €t as a special form and write a handler for

it. We could have something that handles dispatches, having
detected expressions of this type (let). But we could also realize
that | et is just a cleaner way of creating a procedure, then

applying it to capture some local state variables.

* |dea:
* Implement a simple fundamental "core" in the evaluator
+ Easy way to add alternative/convenient syntax?

+ "let" as sugared procedure application:

(let ({<namel> <wvall>)
(<name2> <val2>}))
<body>)

L

{{lambda (<namel> <name2>)
<vall>» <val2>)

<body>)

4 anz

Said another way, a | €t expression is really just the same as the expression shown here. That is, we create a

lambda, whose argument list is the same as the arguments for the bindings in the | €t , whose body is just the
body of the | et , and that | armbda would then be applied to expressions whose values we want to bind to those
names. These are equivalent forms. As we saw in the environment model, they create exactly the same kind of

structure.

So rather than building a special form for | €t | let's see how we could use syntax and syntactical manipulation to
convert this form of | €t into an application of a procedure to a set of arguments.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Detect and Transform the Alternative Syntax

(define (m-eval exp env)
{cond ((self-evaluating? exp) exp)
({variable? exp)
{lookup-variable-value exp env))
((quoted? exp)
(text-of-quotation exp))

{({(let? exp)
(m-eval {let->combination exp} env))
((application? exp)
(m-apply (m-eval (operator exp) env)
(list-of-values
(operands exp) env)))
(else (error "Unknown expression™ exp))))

10iz

Slide 16.2.11

Thus now we just need to figure out how to rewrite the tree
structure that represents a | €t expression into something that

looks like a procedure application.

First, we will need a way to check if we have al et

expression, which is just a tagged list check, as before. Next,
we need to pull out the variables of the | €t , we need to pull

out the values to which they will be bound, and we need to pull
out the body. Notice how | et - bound- vari abl es

takes in one of these tree structures, will get the cadr which
gives us the set of let clauses, and then will map Car down

Slide 16.2.10

First, here is the change we will make inside of our evaluator.
We will have something that detects lets. What we will do in
this case is write something that manipulates the syntax, turns a
let into a combination, and then simply evaluates that
combination, i.e. recursively calls meval treating this as a

normal combination.

Thus in this case the dispatch is different. Rather than going off
to a procedure, it manipulates syntax, then evaluates the new
expression.

Let Syntax Transformation

(define (let? exp) (tagged-list? exp 'let))

(define (let-bound-variables let-exp)
(map car (cadr let-exp)))

(define (let-values let-exp)
{map cadr (cadr let-exp)))

(define (let-body let-exp)
(sequence->exp (cddr let-exp)))

that list. As we will see, this pulls off all the variable names from the clauses.
Getting the values is almost the same, but maps cadr down the list of clauses. For the body, we simply take the

cddr of the expression to get everything but the | €t tag, and the variable clauses. We convert that into a single
expression by wrapping a sequence label (a begi N) around it.

Ignoring for the moment the specific details, these three procedures are basically walking through the tree structure
corresponding to a | €t expression, and pulling out the right pieces: the list of variables, the list of values and the

body (which gets converted into a sequence)

Let Syntax Transformation
(define (let? exp) (tagged-list? exp 'let))

(define (let-bound-variables let-exp)
{map car (cadr let-exp)))

(define (let-values let-exp)
(map cadr (cadr let-exp)))

(define (let-body let-exp)
{sequence->exp {cddr let-exp)))

{define (let->combination let
(let ((names (let-bound-variables let-exp))

- —exp)

{(values {(let-values let-exp))
(body (let-body let-exp)))
{cons (list 'lambda names body)
values)))

¢

12

Slide 16.2.12
Now we can put all of this together. So | et -

combi nat i on is going to take in a tree structure
representing al €t expression. It will then convert this into a

form that we can just evaluate.

To do this, it takes the tree structure corresponding to the
variables, the tree structure corresponding to the values, and the
tree structure corresponding to the body, and then it creates a
new tree structure. Notice this structure! The first part of this
list (because we are doinga CONS) is a list that represents a

procedure in our syntax. It is a list of the symbol | anbda,

followed by a list of names, followed by a body! That looks exactly like a| anbda expression.
And then we put that at the beginning of a list of the values. So this will converta| €t combination into a new
tree structure, a tree structure that looks exactly like an application of al ambda to a set of values. That will then

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

be passed to meval , which will cause the evaluation of the whole expression, creating the thing we want.

Slide 16.2.13 . . Details of let syntax transformation
So let's trace this through. Remember thata | €t expression e i
such as that shown on the slide gets converted by the parser into G

(dosomething x ¥))

a tree structure that looks exactly like this. The first part of the
tree is the symbol | €t , the second part is a tree that captures

the set of clauses, and the last part is another tree that represents
the body of the | @t . This tree structure is what is passed into

meval and let's see what happens when we do that.

dosomething X ¥

130

Slide 16.2.14
What does the syntactic manipulation that convertsa | et

expression into a combination do? First it wants to get the
bound variables, and the code says to get the cadr of this

tree. So it is going to grab this piece ...

Details of let syntax transformation

dosomething x ¥

14

4

Slide 16'2'1_5 L. i Details of let syntax transformation
... and then it says to walk down this piece of list structure,

using a MaP, and apply Car to each element. That creates a
new list, with the car of each element of the old list copied into
that list, shown as ...

1502

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 16.2.16
Details of let syntax transformation ... here. The next thing it does is take the same C adr

structure, but now map cadr down it. This creates a new list
structure, copying the cadr of each element onto it, creating
this ...

4 x ¥

Slide 16.2.17
... structure. And then this syntactic manipulation procedure
walks down the | €t tree structure and grabs the body, given

us this ...

Details of let syntax transformation

Slide 16.2.18

... structure. Note what we have done. We have created three
new pieces of list structure here. We have done NO evaluation,
we have simply manipulated pieces of the tree structure. Given
those pieces, we now glue them together. The code says to
create a list with the symbol | armbda, followed by the set of

names, followed by the body. Take that whole piece and put it
on the front of the structure representing the values.

Details of let syntax transformation

t i dosomething x ¥ oz

Slide 16.2.19

That gives us this list structure, which represents an expression,
and check out its form. We have a list whose first element is a

| antbda expression, followed by a list of expressions, and

we return a pointer to this whole list structure. Evaluating this
tree structure, or if you like the expression that is represented
by this tree structure turns into an evaluation of an application,
as we wanted.

So the key point is that we can do syntactic manipulation of
expressions to convert one form into another form, in this case

Details of let syntax transformation

S

lambda

converting al €t into its underlying | anbda application. oedliing, 3 %

Then we let our evaluator do the work to complete the

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

evaluation.

¢

Named Procedures — Syntax vs. Semantics
(define (foo <parm>) <body>)

- Semantic implementation — just another define:
(define (eval-definition exp enwv)
(define-variable! (definition-variable exp)
(m-eval {(definition-value exp) env)

env))

a0

Slide 16.2.20

What other syntactic variations are possible? Remember how
we had named procedures, that is, forms such as that shown in
the slide. Earlier, we would have had to write (def i ne

foo (lanbda ...)) toseparate the| anbda that
created the procedure from the def I ne that gave it a name.

We saw it was convenient, especially when thinking about the
substitution model, to have this alternative form, in which we
clearly identify the application of a procedure to a set of
arguments. How can we add this form to our system, which so
far meval cannot support.

In terms of semantics this is just another define. We are
defining a variable to be a particular value. What else do we need?

Slide

So we don't want to change the semantics. Evaluating a
definition should behave exactly the same as before. All we
need to do is change the syntax, that is, the thing that
manipulates the tree structure, to support both kinds of

defini

Before, getting the value out of a definition would have simply
grabbed the third subexpression. But now we can be careful.
We will first check to see if the second subexpression is a
symbol. If it is, then we know we have the form of a define we
handled before, and we will simply grab the right piece and
return it. On the other hand, if it is not a symbol, then we can

16.2.21

tions of procedures.

Named Procedures — Syntax vs. Semantics
(define (foc <parm>) <body>)

- Semantic implementation — just another define:
(define (eval-definition exp enwv)
(define-variable! (definition-variable exp)
(m-eval {(definition-wvalue exp) enwv)

env))

+ Syntactic transformation:
{define (definition-value exp)
(if (symbol? (cadr exp))
{caddr exp)
{make-lambda {(cdadr exp) ;Eormal params
{cddr exp)))) ;body

assume we have one of these new forms. What should we do in
this case? We need to desugar or unwrap the hidden | anmbda. So we will construct a new | anbda using a

constructor for | armbdas, passing in the formal parameters, which we get by walking down the tree structure of

the expression, and the body, which we also get by walking down the tree structure of the expression. In this
getting the value of the expression will convert the actual expression into a | anbda. This is great, because that

then gets passed back to eval - def i ni t i on, which evaluates this expression to create the procedure,

which is then returned to be bound to the name.

Notice how again we are simply manipulating the tree structure of an expression to convert it into a new
expression.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 16.2.22
Named Procedures — Syntax vs. Semantics In summary, we have both created eval and appl y to
{eatine (leorcpane>d Shomd) define the semantics for our language, and we have separately
S tic impl tation — just ther define: 1 1 1
e o usansir e de_flned the syntax, the legal expressions in our language. By
(Gofine vazisblol (Gofinition-varisble oo using data abstractions between eval and appl y, and the
(m-eval {definition-value exp) env)
) procedures that manipulate expressions, we give ourselves a
« Syntactc ransformton:) clean way for changing syntax, for adding to the syntax, for
efine inition-value exp - . .
(E (oyabolr (cads exp) manipulating syntactic variations on expressions, without ever
caddr exp -
{make-lambda {(cdadr exp) ;formal params Chan In V I or I .
(czr exp)))) ;bidy ging eva app y .
Thus we have seen both the semantics and the syntax of our
4 N language.
6.001 Notes: Section 16.3
i 3.
Slide 16.3.1 . i o How the Environment Works environment
So you can see that we are making progress in building a manipulation

complete evaluator for Scheme. We started by building ev al
and appl y, on top of some data abstractions so that we could

see the flow of evaluation: between evaluating an expression
with respect to an environment; to applying a procedure to a set
of arguments. We have also filled in the details of the evaluator,
separating the semantics from the syntax, i.e. how we write and
manipulate expressions in the language.

What else do we need to fill in? What about environments? So
far, we have simply relied on there being some kind of abstract | <
table for dealing with storing of bindings, and retrieving them.
Let's make that explicit as well.

" ,
How the Environment Works environment Slide 16.3.2 i B)
g1 Samaniputation /| What do we need in an environment? Abstractly we just want to

« Abstractly —in our

environment diagrams: build the environment diagrams we had in our model. That is,
] . S we need a way of taking bindings (pairings of names and
values) and gluing them together into tables. Those tables will
need pointers to other tables, to allow for sequences of frames.
Thus we need to glue things together as sequences of tables,
and the tables need to glue together bindings of variables and
values.

4 11

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 16.3.3

We can just do this using list structure! Page 3 of the code
handout shows this. An environment will be created as a list of
frames. Thus in this example E2 would be a list whose first
element points to a frame and whose Cdr points off to the

enclosing environment. This list can continue until it terminates
in the global environment, as the last element in the list.

How the Environment Works

« Abstractly —in our
environment diagrams:
E2

i 10
plus:

+ Concretely — our
implementation
(as in SICP)

3
- manipulation

{procedure |...)

Slide 16.3.5

As we have seen, the integral loop of eval and appl y is

to reduce the evaluation of one expression with respect to some
environment to evaluation of another expression with respect to
a new environment that extends the original environment. So
we need to specify how to extend an environment to allow for

this new evaluation.

Extending the Environment
+ {extend-environment Abstractly Ef
'{x y) (list 4 5) E2)
E2 —W x: 10
plus: (procedure ...)
E3 —® x: 4
v 5

611

How the Environment Works

3.
El manipulation

{(procedure |...)

+ Abstractly — in our
environment diagrams:
E2

x: 10
plus:

« Concretely — our
implementation
(as in SICP)

procedursg

4 am

Slide 16.3.4

To represent a frame, we have lots of choices. Abstractly, we
need a paired collection of variables and values. We could just
glue them together in that order: variable, value, variable, value.
A second way however is to create two lists: The first
component will be a list of the variables, and the second
component will be a list of the corresponding values. The
correspondence or binding is determined by the order: the first
variable matches the first value, the second variable matches
the second value, and so on.

Extending the Environment

4 L4l

Slide 16.3.6

Abstractly, we should take a list of variable names, a list of
corresponding values, and a current environment, and we
should create a new frame that is enclosed or scoped by the
original environment, and within which the list of parameters is
bound to the corresponding list of variables. This is just our
environment model.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 16.3.7

Concretely, our environment was just a list of frames, so to Extending the Environment

extend an environment we simply want to add to the front of eSS Abstiacty E%

that list a new frame. Check the code, which simply "conses" a ey LR RRLRE L =

new frame onto the existing environment. And what is a frame? B (SRR, o)
It just constructs one of these pairings of a list of variablesand | .. O t

a list of values. The code is careful to ensure that number of ¥

variables and values matches.

Thus in our concrete implementation, extending an
environment just creates a new frame by pairing up two lists,
then puts that frame at the front of the list of frames that
represents our environment. We now start evaluation with
respect to the new frame at the front of the list.

2

Slide 16.3.8

Once we have an implementation for building environments,

we can turn to using them. In particular, environments are

+ Look for a variable in a frame... intended to help us look up values of variables. We now need

Zloop Tronan e & oTvars and = 0T e in paralel some procedures to support value lookup. So what do we need?
First, we should look for a binding in a frame. Thus we will

« If not found in frame (out of variables in the frame), take the current frame and loop through the list of variables and
OB ImeeRCloSng=mMEohm <Gt the list of values in parallel (remember that we stored those as

two separate lists in our implementation). Thus we just walk

down these lists in synchrony. If we find the variable for which

we are looking, we return the associated value. If we reach the

end of that pairing of lists without finding the variable, then we

know there is no binding for that variable in this frame. Thus

we move on to the next enclosing environment. And we know all of this should just be manipulation of list

structure. The next slide shows the detailed code to do this for us.

"Scanning" the environment

* Look for a variable in the environment...

4 8

Slide 16.3.9

To implement this idea in our particular structure, we just need
two different looping mechanisms. The first one, whenwe are | = @ @@ e eaive var on
going to look up a variable value, loops over environments. So Webifs latvalooyicm)

{define (scan wars wvals)

Scanning the environment (details)

notice what €NV- | 00P does: it takes in an environment, s iy o eon S SRt)
. - . . (else (scan (cdr wars) (cdr vals)))))

and if it is empty, complains about an unbound variable; Ut o Sk

otherwise it will look in the first frame of that environment for (st ((Trme (Eliet-frsms om)l)

{scan (frame-variables frame) (frame-values frame)))))

abinding, where f i I St - f r ane is just a data abstraction | enw-too e

for getting the first frame of the sequence. If it doesn't find a
binding there, it should move on to the next frame in the
sequence. Thus, €NV - | 00p is the top-level loop for looking | ¢

up bindings in a frame.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Scanning the environment (details)

(define (loockup-variable-value var env)
(define {env-loop enwv)
{define (scan wvars wvals)
{cond (({null? vars) (env-loop (enclosing-environment env)))
{{eqg? var (car vars)) {car wvals))
{else (scan (cdr vars) (cdr wvals))})))
(if (eq? env the-empty-environment)
{error "Unbound variable -—- LOOKUP™ var)
{let ((frame (first-frame env)))
(scan (frame-variables frame) (frame-values frame)))))
(env-loop enwv))

4 1081

Slide 16.3.10
Once it gets the first frame of the environment, the method runs
a second loop, SCanN on that frame's list of variables and list

of corresponding values. SCan works its way down both lists

in synchrony. If it runs out of variables, it must not have found
a binding in this frame, and we go on to the next frame. Notice
that it calls env- | OO0p to go back up to the top level to get

the next frame and rescan.

If there are variables left to check, then we compare our search

variable against the next one in the list. If it is, | return the next

element from the values list. If it is not, | SCaN again, moving

in synchrony down both lists.

There are the two loops that let us look up the value of a variable in an environment.

Slide 16.3.11

Other aspects of manipulating variables in environments, e.g.
setting a variable, will have a very similar form. In the case of

setting a value, we similarly look for the right pairing, then st el
change it (see the code for details). e Sy L sion s St Jaa)
Thus we can build environments just out of list structure. arw ok e e e e
{error "Unbound variable -- LOOKUP™ wvar)
{let ((frame (first-frame env)))
{scan (frame-variables frame) (frame-values frame)))))
(env-lcop env))
4

Scanning the environment {details)

(define (lookup-variable-value wvar env)

111

6.001 Notes: Section 16.4

Slide16.4.1 . _ The Initial (Global) Environment 4 -2, =
To get things going, we need an initial environment, also called | P initial eny.
the global environment. This will be our default environment, {dafine (sotup-environmont)
where we will normally evaluate expressions from the user. o & (prinitive prosedure_nanss)
Therefore, in this environment we need bindings for the built-in e B
names of procedures. This will also be our backstop, meaning if iy g
we look through all the environments for a binding, and get to initial-env))
and through the global environment, without out finding a - define inifial variables we always want

. « bind explicit set of "primitive procedures”
binding, we will stop and signal an unbound variable error. - VFE (BB HRHEHYIA G SeRaE

Remember that we are representing our environment just as - in other interpreters: assembly code, hardware,
lists of frames, so to get the initial environment, we will take an
empty environment (just the empty list) and extend it, building

a single frame in which we do the following. We take a set of

possible names for built-in primitives and a set of procedures to go with those names, and we will install them into
the environment. Look at the code handout on page 4 to see how we give our own names to the built-in Scheme
primitives. Remember that the names are our choice: here we have used the same ones as those in Scheme but we
could have made other selections. Also notice that the set of things we choose to have as primitives is also our

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

choice. In addition to creating bindings for our primitive procedures, we also create bindings fort r ue and
f al se to the Boolean values used by the machine to represent these values. Finally we return this environment

as our initial environment.

For details, check out the code handout.

(define (driver-loop)
{prompt-for-input input-prompt)
{let {{input (read)))

{announce-output ocutput-prompt)

{user-print cutput)))

{driver-loop))

¢

Read-Eval-Print Loop 5. s
read-eval-print
loop

{let {{output (m—eval input the-glcbal-env}}}

in

Slide 16.4.2

To interact with our evaluator, we need some mechanisms for
getting expressions into it. For this, we build a simple little
driver loop, which is often known as an REP or read-eval-print
loop. This loop runs through a constant cycle of reading in an
expression, evaluating it using the interpreter, then printing out
the result and cycling to read the next expression. Note how the
code on the slide runs through exactly that cycle.

It prints a prompt to the user on the screen, then reads in an
expression using Scheme's read operator. It then passes that
parsed tree structure to our evaluator for interpretation, with
respect to our global environment. When done, it prompts the

user with a note that the value follows, and prints out the value.

It then cycles through this process again.

With this piece we have completed our construction of an evaluator. We have eval and appl Yy to unwrap our

abstractions to primitive operations, we have a definition of the syntax of the language which is abstracted away
from the interpreter to allow ease of modification, we have details of how to create and use environments to hold
our values for variables, and we have a simple interface to the interpreter.

6.001 Notes: Section 16.5

Slide 16.5.1

So there you have it! We have built an evaluator for Scheme,
implementing eval and appl y. Although there is a lot of

code here, you should try to step back from the details to see

the general outline of this evaluator.

Having built our evaluator, we can ask some questions about
choices that were made in designing this evaluator. In
particular, we said much earlier in the term that Scheme uses
lexical scoping. So what does that mean?

Diving in Deeper: Lexical Scope

4]

Diving in Deeper: Lexical Scope

How does our evaluator achieve lexical scoping?
— environment chaining
— procedures that capture their lexical environment

(E 2119

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 16.5.2

Think about what happens when we apply a procedure to a set
of arguments. In detail, we get the values of the arguments and
the value of the procedure, then we create a new environment in
which the variables of the procedure are bound to the
arguments passed in, and relative to that environment we
evaluate the body of the procedure. So what happens inside that
body? In particular, that body will be an expression that
contains lots of names, and the issue is: how do we find the
values associated with those names?

First, any name that was a formal parameter of the procedure
gets its value from the frame we just created. Those are called
bound parameters. But any variable in that body that is not

one of the formal parameters is known as a free variable. How do we find the bindings for those? We have said
that if we have a procedure that has free variables, the values for them come from bindings made by enclosing
procedure definitions. In other words, they are looked up in the environment in which the procedure was defined.

Slide 16.5.3

Or said another way, it says we walk up that chain of
environments looking for a binding of the variable. And we
know that chain of environments comes from sets of
procedures. So if our procedure is defined inside another
procedure we know that if we can't find a scoping (a formal
parameter) binding the thing we are looking for in the initial
| anbda we go outside the scope of that | armbda to the

enclosing | anbda, looking for a corresponding formal
parameter here. Thus, the boundaries of the | anbda
expressions define the chain of frames we are going to see in

Diving in Deeper: Lexical Scope

How does our evaluator achieve lexical scoping?
— environment chaining
— procedures that capture their lexical environment

(f a9

our environment model, and that is how we are going to capture
our lexical scoping to determine the values of variables. How does this happen in practice?

Diving in Deeper: Lexical Scope

How does our evaluator achieve lexical scoping?
— environment chaining
— procedures that capture their lexical environment

+ make-procedure:
stores away the evaluation environment of Lambda
the "evaluation environment" is always the
enclosing lexical scope
why?
— our semantic rules for procedure application!
- "hang a new frame"
— "bind parameters to actual args in new frame"
— "evaluate body in this new environment”

4 ang

Slide 16.5.4
Look at the code for make- pr ocedur e, which you will

find on page 3 of the handout. It glues together a tag, the
parameters, the body, and the environment in which it is
evaluated. As a consequence, the evaluation environment is
stored away and is always going to be the enclosing lexical
scope. It is going to tell use where to look to find a binding for
a free variable. Why?

Well that was just a design choice! This came from our design
of procedure application, which said: hang a frame, bind the
parameters to the actual values passed in, then evaluate the
body in this new environment. The choice here was to scope

together frames based on where the procedures were actually evaluated.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 16.5.5

So let's remind ourselves of how that works. This is just
reviewing the environment model, but with our detailed
implementation now in mind. Suppose we consider the
definition shown here. In the environment model, we know

what happens ...

Lexical Scope & Environment Diagram

(define (foo x ¥)
(lambda (z) (+ x ¥y 2)))

GE

foo:
-\

I

body:
(A (=)
(+ x ¥ 2))

6

Slide 16.5.7

Let's apply f 0O to a couple of arguments, and give the result
the name bar . FOO then hangs a new frame scoped by the
same environment as the procedure, binds X and Y to the
values 1 and 2, and relative to this frame we evaluate the body.

GE foo: bar:
This is another | anbda so we create the double bubble 7=
scoped by this frame since that is where the evaluation takes b x ?O/ -------------- \T =
places. Bar is bound to this value, i.e. this procedure object. e, Y

Lexical Scope & Environment Diagram

(define (foo x y)
{lambda {z) (+ x ¥ 2)))

(define bar (foo 1 2))

(bar 3)

(+x¥ 2)) p: g
body: (+ x ¥ 2) o | gy
=> 6

¢

ana

up the chain to the global environment.

Lexical Scope & Environment Diagram

(define (foo x ¥}
(lambda (z) (+ x ¥ z)))

;(E e

Slide 16.5.6
Evaluation of this expression will create a binding for f 00 in

the global environment to a procedure of arguments X and Y
coming from that hidden | anbda (due to the desugaring of

the syntactic sugar). Note that the body of this procedure is
another | anbda expression that has not yet been evaluated,

but just exists as tree structure.

Lexical Scope & Environment Diagram

(define (foo x vy}
(lambda {(z) {+ x ¥ 2)))

(define bar (foo 1 2))

(+xv¥2)) p: gz
body: (+ x ¥y 2)

4 it

Slide 16.5.8

Now let's apply bar . We can trace through our evaluator, or
alternatively our environment model, to drop a frame whose
enclosing environment is identical to the procedure's, within
which we bind the formal parameter to its argument, and
relative to which we evaluate the body of this procedure. Notice
that we are getting the values of X, Y and Z with respect to

E2. Thus the binding for Z will come from this frame as it is
scoped by the | ambda but to get the bindings for X and Yy

we move up the chain to the next frame which comes from the
enclosing | anbda. To get the value of + we move further

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 16.5.9 . . Lexical Scope & Environment Diagram

As a consequence of this, we can see that we will always R

evaluate the expression (+ X Y Z) (the body of bar) in o LI
. . . : tetine bax (oo T 20) in a new environment inside the

a new environment within the lexical scope established by the

(bar 3) surrounding lexical environment.

enclosing procedure. Every time we apply this procedure, we
will hang a new frame that will always scope back to E1, which | ©=
is the surrounding lexical environment, meaning we will always ?g/
get the same bindings for X and Y. pex

This was a particular choice we made in constructing our v ., 2
evaluator, but it is not the only such choice. P XY vy 1w
Q a9
Alternative Model: Dynamic Scoping Slide 16'5'10 L .
+ Bynanissope; An alternative way to get blndlngs_for free varlablt_as V\{ould be
—Look up free variables in the caller’s environment to look them up in the caller's environment, meaning in the

rather than the surrounding lexical environment

environment that corresponds to the procedure asking for the
values, rather than in the surrounding lexical environment. This
will lead to a different behavior, and this style of handling free
variables is known as dynamic scoping, because it is based on
the values in place when the caller asks for them.

4 10018
S“Fje 16.5.11 Alternative Model: Dynamic Scoping
This model leads to a different behavior. Consider this « Bynanicsans:
definition for POON. Notice that there is no explicit reference — Lok up free variables in the caller's environment

rather than the surrounding lexical environment

to the parameter X within this body. We can define bear as
shown. Notice that X is used in the body of bear but there is
no explicit parameter for X in the definition. Thus, bear

(define (bear y)

needs to get the value from somewhere else. (+ x ¥))
If we call (pooh 9) itwillcall (bear 20) andgiven | oons) = 2o

that the value of X was specified to be 9 in the call to pOOh

we could get out the value shown. ¢
This looks strange, as this certainly would not work under
lexical scoping, or our normal Scheme. We are now changing the behavior of our evaluator, we are asking pOOh

to set a binding for its parameter X so that when bear is used, it can use that value of X created in the caller's
environment.

Example:

(define (pooh =x)
{bear 20))

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 16.5.12
Dynamic Scope & Environment Diagram Suppose we want to change our evaluator to use dynamic
(detine (roon x) scoping rather than lexical scoping. Conceptually, how would
e e) this change our environment model? First, note that our double
¢ ox) bubble becomes a single bubble. Under dynamic binding we

don't need to keep track of the enclosing environment in which

° | L boar: ~, | | a procedure was created, as it is no longer used to define the
i y scoping for free variables.
pix P P
o body:
(bear 20) o
4
Slide 16.5.13 Dynamic Scope & Environment Diagram

Now, let's apply pOOh to some argument. Applying pooh

under this new model says to drop a frame in which we bind the ot o
formal parameter X to the value 9. That frame now gets scoped aox

by the caller's environment, which in this case happens to be L

(define (pooh x)
(bear 20))

the global environment, since that is where we are asking for *| poch -~y bear: -
the evaluation. So far this looks like before. Now, relative to _ {1 pﬁ
that frame we are going to evaluate the body of POOh. boay o Ll

4 13418
Dynamic Scope & Environment Diagram Slide 16.5.14
iz gon And the body of POOh says to apply bear . Thus, we apply
s ar(be) a procedure so we build a frame in which Y is bound to 20.
R But now, the scoping environment for this frame is the
e environment in place when the caller asked, i.e. E1. It does not
* | Gl PN | inherit the environment that was there when bear was
b x é/l pﬂ created but rather it inherits the environment that was used
B i AT Gy when the value of applying bear was asked for. Now we can
21— 20 (+ x ¥ R R - -
B evaluate the body (+ X V) in this frame, and thus it will
4 St inherit the value of X that was passed in back when we

evaluated pooh.

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 16.5.15
The key thing to note is that we will evaluate the expression
(+ X Y) inanenvironment that extends the caller's

environment. This means that as we call this at different times,
we will have different environments, as opposed to the lexical
case in which we would always point back to the environment
created when the procedure was created.

So we can see we can get a very different behavior when we
shift to dynamic scoping.

Dynamic Scope & Environment Diagram

(define (pooh x)
(bear 20))
Will evaluate (+ = v

in an environment that extends
the caller’s environment.

(define (bear v)
(+ x¥)

(pooh 2)
GE | pooh;\ bear: -\
F ¢
o x P p
body: ",-"‘ LN 4
(bear 20) " ‘_”.-‘ body:
v: 20 trxy

(+ x) | E2

4 = 2 1519

A "Dynamic" Scheme

(define (m-eval exp env)
{cond
{(self-evaluating? exp) exp)
{{variable? exp) {(loockup-variable-value exp env))

{(lambda? exp)

(make-procedure {(lambda-parameters exp)
{lambda-body exp)
"*no-environment*)) ;CHANGE: no env

{(application? exp)

(d-apply {(m-eval {operator exp) env)
{list-ocf-values (operands exp) env)
env)) ;CHANGE: add env

{else (error "Unknown expression -- M-EVAL" exp))})

Q 16018

Slide 16.5.16

We will return to the issues of why one might want to have
dynamic binding rather than lexical binding. Here, we want to
focus on how simple it is to make this change in our evaluator.
In fact, only a very small number of changes can cause this
drastic change in behavior.

First, when we evaluate a | armbda we will make a procedure

as before, but now we don't need to include the enclosing
environment. We don't make a double bubble, we make a single
bubble. Thus we can use the same form, but just pass in a
symbol indicating that no environment is stored.

Slide 16.5.17
The second change occurs when we go about actually applying
a procedure (something we built with a | antbda) to a set of

arguments. Remember that in the previous case, we got the
value of the operator, we got the values of the operands, and
then we apply the operator, which meant evaluating the body of
the operator in a new environment that extended the
environment part of the procedure with a frame binding the
parameters to the values. Here, we change that. Now our
application says: get the value of the operator, get the list of
values of the operands, and then apply that operator in the
current environment. Thus we have added one more argument

toour appl vy.

A "Dynamic" Scheme

(define (m-eval exp env)
{cond
{({self-evaluating? exp) exp)
{{variable? exp) (lookup-variable-value exp env))

{{lambda? exp)

(make-procedure {lambda-parameters exp)
(lambda-body exp)
T*no—environment*)}) ;CHANGE: no env

{{application? exp)

(d-apply {(m-eval {operator exp) enwv)
{list-of-values (operands exp) env)
env)) ;CHANGE: add env

(else (error "Unknown expression -- M-EVAL" exp))))

4 17

A "Dynamic" Scheme - d-apply

(define (d-apply procedure arguments calling-env)
{cond ((primitive-procedure? procedure)
{(apply -primitive-procedure procedure
arguments))

{ (compound-procedure? procedure)

{(eval -sequence
(procedure-body procedure)
({extend-environment

(procedure-parameters procedure)

6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology.

Slide 16.5.18
The only other change we need is a dynamic appl Y. This

appl vy takes in a procedure, a list of values, and an

environment, the environment that the caller is in.
For primitives, this appPl Y does the same thing. However,

application of a compound procedure (something we built with
al anbda) will evaluate the body (which we expect to be a

arguments

sequence) in an environment, but here the environment comes
from extending the calling environment.

The key thing to note is how an incredibly small set of changes
toeval andappl y can dramatically change the way in

which variables are interpreted.

calling-env))) ;CHANGE: use calling env

(else {error "Unknown procedure" procedure))))

(E 18419

Slide 16.5.19

This was really the whole point of this example of dynamic
scoping. It leads to a different kind of behavior and it is worth
thinking about what kinds of advantages one might get from
such a change. But what we have really done is show how by
making a few small changes to eval and appl y we have

changed the semantics of the language. That is exactly the point
of having eval and appl y. They define what it means to azgumants

calling-env))) ;CHANGE: use calling env
evaluate expressions in a language.
The second point is that by cleanly separating the syntax of a
language from the semantics, we have enabled making that kind ¢
of change in an easy manner. The data abstractions that define
the syntax separate them from the rules for interpretation. Thus we can change the evaluation rules, but not have to
make any changes to the syntax.
In the next lecture, we will return to the idea of changing the rules of evaluation, and examining the impact of those
changes on the behavior of the language.

A "Dynamic" Scheme — d-apply

(define (d-apply procedure arguments calling-enwv)
{cond ((primitive-procedure? procedure)
(apply-primitive-procedure procedure
arguments))
{ (compound-procedure? procedure)
(eval -sequence
(procedure-body procedure)
(extend-environment
(procedure-parameters procedure)

(else {error "Unknown procedure” procedure))))

	Local Disk
	6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved

