
6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

6.001 Notes: Section 8.1 

Slide 8.1.1 
In this lecture we are going to introduce a new data type, 
specifically to deal with symbols. This may sound a bit odd, but 
if you step back, you may realize that everything we have done 
so far in the course has focused on procedures to manipulate 
numbers. While we have used names for things, we have treated 
them as exactly that: names associated with values. 
Today we are going to create a specific data type for symbols, 
and see how having the notion of a symbol as a unit to be 
manipulated will lead to different kinds of procedures. 
To set the stage for this, recall what we have when we deal with 
data abstractions. We said a data abstraction in essence 
consisted of a constructor (for building instances of the 
abstraction), selectors or accessors (for getting out the pieces of an abstraction), a set of operations (for 
manipulating the abstraction, while preserving the barrier between the use of the abstraction and the internal details 
of its representation), and most importantly, a contract (specifying the relationship between the constructor and 
selectors and their behaviors). 

Slide 8.1.2 
For example, if I want to create an abstraction for manipulating 
points in the plane, I could create a constructor like this. Make-
point is a procedure that glues together two parts into a list. 

Slide 8.1.3 
Here is one of the associated selectors, which in this case takes 
a data object as built by the constructor, and pulls out the first 
(or x coordinate) part of that object. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 8.1.4 
Given that I can build objects of this type, I can define 
operations on them. Notice that the key point about these things 
is that they use the selectors to get at the pieces of the data 
object. For example, in this case we do not use car to get the 

piece of the object, we use the defined selector. 

Slide 8.1.5 
... and then the key piece, the contract, the thing that relates the 
constructor and selectors together. For this example, the 
contract states that however we glue pieces together using the 
constructor, applying the first selector to that result will cause 
the value of the first piece to be returned. 
So, with these ideas of abstractions in mind, let's turn to 
introducing a new kind of data structure. 

Slide 8.1.6 
Let's first motivate why we need a new data type. 
Suppose I ask you the following question. Think for a second 
about how you might respond. I, personally, would probably 
respond by saying "blue". 

Slide 8.1.7 
Now, what about this question? If you are thinking carefully 
about this, you ought to respond by saying "your favorite 
color". So, we say two different things in response to these two 
questions. What's the difference in the questions? 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 8.1.8 
If you think carefully about it, you should see that in the first 
case, I got the meaning associated with the expression "your 
favorite color", much like getting the value associated with a 
name. In the second case, I got the actual expression. The 
"double quotation marks" in the second case indicated that I 
wanted the actual expression, while in the first case I want the 
value associated with it (i.e. the actual favorite color vs. the 
phrase "favorite color"). So in many cases we may want to be 
able to make exactly this distinction, between the value 
associated with an expression, and the actual symbol or 
expression itself. This is going to lead us to introduce a new 
data type. 

Slide 8.1.9 
Now, the question is how do I create symbols as data objects? 
Well, we already saw one way of doing this, when we defined a 
name for a value. 
And we saw that if we wanted to get back the value associated 
with that symbol (or name) we could just reference it, and the 
evaluator would return the associated value. 
But suppose I want to reference the symbol itself. How do I do 
that? In other words, how do I distinguish between "your 
favorite color" and "blue" as the value of "your favorite color". 

Slide 8.1.10 
Basically, we need to back up and think about what the Scheme 
interpreter is doing. When we type in an expression and ask for 
it to be evaluated, the reader first converts that expression into 
an internal form, and the evaluator then applies its set of rules 
to determine the value of the expression. 
Here, we need a way of telling the reader and evaluator that we 
don't want to get the value. Scheme provides this for us with a 
special form, called quote. If we evaluate the example 

expression using this special form, it returns for us a value of 
the type symbol that somehow captures that name. 
Note that it makes sense for quote to be a special form. We 

can't use normal evaluation rules because that would cause us to get the value associated with the name alpha but 
in fact our goal is to simply keep the name, not its value. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 8.1.11 
So what kind of object is a symbol? We can think of it as a 

primitive data object. Hence it doesn't really have a constructor 

or selectors, though quote serves to help us distinguish 


between the symbol and its value. 

It does, however, have some operations. In particular, the 

predicate symbol? takes in an object of any type, and 


returns true if that object is a symbol. 


The operation eq? is used to compare two symbols (among 


other things) and we will return to that in a second. 

So here is our new data type for creating symbols, that is, data 

objects that refer to the name itself, rather than the value with 

which it is associated. 


Slide 8.1.12 
To see how this data structure is handled, let's go back to our 
"two worlds" view of evaluation, separating the visible world of 
the user from the internal execution world of computation. 
What happens when we consider symbols in this context? 

Slide 8.1.13 
First, remember what happened when we evaluated other 
expressions. For example, if the expression were a lambda 
expression, then the evaluator checked the type of this 
expression, realized it was a special form, a lambda, and used 
the rule for that particular special form. In this case, it would 
create the compound procedure represented by that expression, 
and return a pointer to that created object, causing the computer 
to print out information identifying that pointer, i.e. some value 
associated with such an object. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 8.1.14 
Something different happens with quotes. If we type in an 
expression involving the special name quote, the evaluator 

checks the type of this expression, recognizes the special form, 
and uses a rule designed for such special expressions. 
In the case of quote, we simply take the second subexpression 
and create an internal representation for it. The reader 
recognizes this as a sequence of characters and creates a symbol 
with that sequence of characters, like a name. The evaluator 
then returns to the visible world something to print out, simply 
the name that we just quoted, beta in this case. 

Slide 8.1.15 
Now that we have the ability to create this new kind of data 
object, note that we can use it anywhere we would expect to use 
such primitive objects. For example, we can certainly create a 
list of normal things, like numbers. Remember that creating the 
list of 1 and 2 returns a printed representation of that list 
structure, written as (1 2). 

Slide 8.1.16 
... but I could also create a list of quoted things. We evaluate the 
arguments to list, getting two symbols, then create the list of 
those symbols, finishing with a printed representation of the 
structure created by gluing those symbols together. 

Slide 8.1.17 
What does that list look like? Well, list creates a box-and-

pointer structure just as in the case of numbers. Thus at the top 
level of that structure, we will have a skeleton containing two 
things, ending in the special "empty list" symbol. And what 
hangs off of this spine? A pointer to the data structure of a 
symbol! Thus we can use symbols in the same places we might 
have earlier used numbers within other data structures. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 8.1.18 
In fact, our Scheme evaluator is smart, and it keeps track of 

what symbols have been created so far. As a consequence, 

when we refer to a symbol, Scheme gives us a pointer to the 

unique instance of that symbol. We can illustrate that as shown, 

by evaluating this expression. 

This will create a list of two elements, both of which happen to 

be the symbol delta. 


Slide 8.1.19 
Scheme will create a box-and-pointer structure for a two-
element list. But the car of both cons pairs in this list now 

point to exactly the same object inside of the machine, namely 
the data structure for the symbol delta. 

Slide 8.1.20 
This is valuable, because it gives us a way of creating 
predicates for testing equality of symbols, and indeed other 
more complicated objects, as we will see a bit later on. 

Slide 8.1.21 
Our predicate for testing equality of symbols is eq?. This is a 

very powerful procedure, used to test equality of a range of 
structures, as we will see. Eq? is a primitive procedure (i.e. 

something built into Scheme), and it returns the Boolean value 
"true" if its two arguments are the same object. For our context, 
that says that since we create only one instance of each symbol, 
using eq? to test equality of symbols will return true if the 

two expressions evaluate to a pointer to the same symbol data 
structure. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 8.1.22 
Here is an example of what we mean by that. If we apply eq?
to two arguments that evaluate to the same symbol, we get a 
"true" value returned, otherwise a "false" value is returned. 

Slide 8.1.23 
Finally, here is the type of eq?. It accepts two arguments of 

any type other than a number or a string, and returns a Boolean 
value, based on the rules described above. 

Slide 8.1.24 
For numbers, we have a separate procedure to test equality, and 
a different procedure to testing equality of strings. Everything 
else uses eq?. 

This now completes our method for creating and dealing with 
symbols. 

6.001 Notes: Section 8.2




6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 8.2.1 
Having the ability to intermix numbers and symbols in 
expressions is a very useful thing, and as a consequence we 
would like to be able to generalize this to all sorts of data 
structures. Since our primary data structure is a list, it would be 
nice if we had the ability to quote list structure, in addition to 
simple names. 

Slide 8.2.2 
In fact, our reader and evaluator will do this for us. Since the 
fundamental representation of expressions in our language is in 
terms of lists and list structure, the reader is set up to convert 
every typed in expression into list structure. This is true for any 
expression created out of parentheses, which denote the 
boundaries of the list structure. 
As we will see in a few lectures, the evaluator is then set up to 
take that list structure and manipulate it according to the rules of 
evaluation, to determine the meaning of the expression. 
In the case of the special form quote, however, the evaluator 
simply passes on the list structure, without any evaluation. Thus 
in general, quoting a printed representation of a list structure, 

including sublists of numbers and symbols, gets converted to the appropriate list structure internally, and then 
returned. Its printed representation will then match the original expression. 
Slide 8.2.3 
This is nice, because quote now let's us distinguish between 
names of things and their values, for virtually every kind of 
structure. Of course, writing out long expressions involving the 
special symbol quote is a bit tedious, so we have a nice 
shorthand in Scheme, namely the single quote mark ' . Thus, 'a is 
just a shorthand for (quote a). And '(1 2) is just a 
shorthand notation for (quote (1 2)) which we already saw 
is shorthand for (list (quote 1) (quote 2)). This 
means in general that placing a ' in front of the printed 
representation for any list structure will cause the evaluator to 
create the corresponding list structure. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 8.2.4 
So let's take a quick break to see if you are getting this idea. Here 
are a set of expressions. What gets printed out as a result of 
evaluating each of these? When you think you have the answers, 
go to the next slide. 

Slide 8.2.5 
So here are the solutions. First, notice that we have defined x to 
have the value 20, creating a pairing of that value with that name. 
Evaluating the first expression just gives us a normal 
combination, resulting in the addition of 3 to the value of x, or 23. 
The next expression, with the single quote, says to just return a 
list whose printed representation is equivalent to this, i.e. the list 
of '+, 'x and '3, or the list of the symbol +, the symbol x and the 
number 3. Thus what is printed out is the same expression as what 
was quoted. 
The next expression draws a distinction with this example. It says 
to create a list of a quoted +, the value of x, and the quoted value 
of 3. Thus we get a list of the symbol + (because we quoted it), 
the number 20, since we asked for the value of x, and the number 3. 
The next expression returns the same value, since quoting a number just returns the number. 
Finally, what happens if we just ask for the list of +, x and 3? Well, we get a list of the values of each of these 
expressions, as shown. 
Thus, these examples show the variations in the use of quotation within list structure, determining when the values 
of expressions are returned and when the names are simply returned. 

6.001 Notes: Section 8.3 

Slide 8.3.1 
Let's take the idea of symbols, and combine it with some of the 
other lessons we've seen so far, to see how symbols add to the 
expressive power of our language. To do this, we'll look at the 
example of symbolic derivatives, in particular, creating a 
system to compute symbolic derivatives. By that, I mean 
returning symbolic expressions, much as you do in calculus. 
Thus, I want a system that takes some representation for the 
algebraic expression x + 3 and some representation for the 

variable x, and returns the derivative of this expression with 

respect to that variable. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

To do this, I am going to need a way of representing expressions, which I will do using lists. Thus the algebraic 
expression x + 3 I choose to represent as the list (+ x 3), that is a list of the symbol, +, the symbol, x, and 

the number 3. For base cases, I will just represent a variable by its symbol. Products I will represent in a similar 
fashion. And given an expression involving more than two terms I will break into recursive pieces each of which 
involves at most two terms. 
Thus, I am going to restrict my system to sums and products of at most two terms. I haven't said how to build the 
system, of course, but only how I am going to represent expressions in my system. 

Slide 8.3.2 
As we have already said, we would like to build a procedure 
deriv that takes as input some representation of an algebraic 

expression, and a representation of the variable with respect to 
which we want to take the derivative, and returns a 
representation of the new expression that represents the 
derivative of that algebraic expression. 

Slide 8.3.3 
So, for example, here is the behavior I would like. I would like 
to differentiate x + 3 with respect to x and get back the 

value 1. Notice the use of the single quote to indicate that I 
want the list structure itself as the value of the argument, 
creating a representation of the algebraic expression. Thus, we 
want our system to take a symbolic algebraic expression as 
input, and return a new symbolic algebraic expression as 
output, satisfying the rules of calculus. 

Slide 8.3.4 
To build this system, I am going to stitch together several ideas, 
using lists of lists to represent expressions, using symbols to 
capture algebraic expressions, and using procedural abstractions 
to manipulate the list structures corresponding to those 
expressions. 
To build the system, I am going to consider several stages, 
focusing on how to initially get things going, then how to build 
a direct implementation, and finally how to learn from the 
direct method to create a better implementation. Throughout, 
we will see how these ideas of data structures and procedural 
abstractions work together to implement this system. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 8.3.5 
First, I need to figure out exactly what I want in terms of the 
behavior of my system. So let's look carefully at what the pieces 
are. For primitive algebraic expressions, we know that there 
are some simple rules. The derivative of a constant with 
respect to any variable is just zero. The derivative of a variable 
with respect to itself is just one, while the derivative of any 
other variable with respect to this variable is also zero. Note 
that we are inherently assuming that a variable is not a function 
of some other variable. 
For more complicated expressions, we have some very nice 
rules. For example, to get the derivative of a sum with respect 
to some variable, we know that we can take the derivative of 
the two parts of the sum, then add those results back together to get the final expression. For the derivative of a 
product, a slightly more complicated rule states that we can take the derivatives of the pieces of the product, 
multiply the results by appropriate other parts, then add the result together to get the final value. Note that this 
should look familiar. Notice what we are doing. We are taking a complex thing, reducing it to simpler versions of 
the same operation on smaller pieces, and then gluing the parts back together again. So to apply derivatives to 
complex things, we do this recursively on simpler pieces. 
Here then are some rules for the overall behavior I want my differentiation system to obey. 

Slide 8.3.6 
We can observe several useful things about what we have done. 
First, note that e1 and e2 might themselves be complex 

expressions, in which case we would apply these rules again to 
each of those pieces. Thus, our procedure will need to 
recursively walk down these expressions, applying these rules 
to subsequent pieces. 
Second, as we noted, the derivative of a sum is decomposed 
into simpler versions of the same problem on smaller pieces, 
plus a simpler operation that puts the results back together. 
Putting these two observations together, we can see that 
expressions might not be lists, but lists of lists, sometimes 

called trees, of arbitrary depth. That is, we can apply these rules to expressions whose parts are themselves sums 
or products of elements who might be sums or products, and so on. We simply want to recursively apply the rules 
to break the problem down into simpler pieces until we ultimately reach primitive cases, then glue all the parts 
back together again. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 8.3.7 
Given our suggestion that we can represent expressions as lists 
of things, that is lists of subexpressions with the symbol for the 
operator at the front of the list, and the arguments behind it, we 
can nicely associate a data type with each expression. 
First, any symbol will represent a variable. Any number will 
simply denote a constant. And then any other expression 
denotes its type by the object at the front of the list. Thus, any 
expression beginning with a + is a sum, and thus will be subject 

to the rule for derivatives of sums. Similarly for products. And, 
of course, the subexpressions could themselves be lists whose 
type is indicated by the type of the first part of the list. In other 
words, except for our primitive expressions (constants and 
variables), every expression in our system has its type defined by the first subexpression of the list. This also 
excludes some kinds of expressions that might be perfectly valid from an algebraic perspective. Thus, expressions 
with the operator in the middle are not included in our choice of representation. Also, we have restricted ourselves 
for convenience to expressions with exactly two arguments. Algebraic expressions with more than two parts will 
have to be represented by nested lists of operations. 
Note that we are simply making some design choices in our system, something we are free to do as we set up the 
computational structure for implementing that system. Thus our choice is to allow as legal expressions, constants, 
variables or lists of three elements, the first of which is either a + or a *, and the other two of which are legal 

expressions, by this definition. 

Slide 8.3.8 
So let's formalize this with a type description for our legal 
expressions in this simple little language of derivatives that we 
are building. 
In our system, an expression, which we denote by Expr to 

distinguish them from more general Scheme expressions, can 
either be a simple expression or a compound one. The |

symbol denotes "or", by the way. And what are those? 

Well a simple expression is either of type number or symbol 

(corresponding to our constants and variables). A compound 

expression now has a very particular type. It is a list of three 

elements, where the first element is either the symbol + or *


and the other two parts are expressions as defined by this type definition. Note the format for specifying that this is 

a list of three elements, by using our type notation for pairs. 

Note how this type definition is recursive, thus automatically allowing for arbitrary depth expressions. 




6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 8.3.9 
So now we can put together an initial plan for implementing 
this system. Since we only have a few kinds of expressions, the 
simplest approach is to use a different procedure for taking the 
derivative of each kind of expression. So we could define 
deriv to be a procedure (note the lambda) that accepts 

an expression and a variable (represented using the forms we 
just discussed), and checks to see if the expression is a simple 
one. If so, we could have one procedure for handling such 
expressions, otherwise we could design a second procedure to 
handle compound expressions. Thus, we have used the fact that 
there are two general types of expressions to design our 
procedure. All we have to do is decide what it means for an 
expression to be simple. 

Slide 8.3.10 
For that, we can just look at the type. What do we know about 
these expressions? Well, we know that a compound expression 
is a list, hence starts with a pair, and none of our simple 
expressions is a pair. So to find a simple expression, we could 
simply confirm that the expression is not a pair. 

Slide 8.3.11 
Now we can start completing the implementation by filling in 
the cases. The first branch of our cases deals with simple 
expressions. And here we can simply set up a branch to deal 
with each specific type. Since there are only two types of 
simple expressions, we can just check to see if we are dealing 
with number, say, in which case we will apply the appropriate 
rule, otherwise we will apply the rule for variables. And how do 
we handle each simple case? We simply go back to our rules 
from our problem design and description. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 8.3.12 
We said the derivative of a constant (or number) was just 0, so 
we can simply fill in that case. 
We said the derivative of a variable was 1, if it was the same 
variable as that with respect to which we are differentiating, 
otherwise it was 0. To fill in that case, we just need to test if the 
expression is the same variable as the supplied variable, and for 
that we use eq? since our variables are represented as 

symbols. And that is all we need to handle simple expressions! 

Slide 8.3.13 
For compound expressions, we can use exactly the same design 
methodology. We can have a different branch of this top level 
decision procedure for each type of expression. Since we only 
have two types of compound expressions, we could simply 
check to see if the expression is a sum or not. To see if the 
compound expression is a sum, we will simply grab the first 
subexpression (using car since we know it is a list) and test to 

see if it is the symbol + by comparing using eq?. Notice the 

use of the ' mark to give us the symbol + for the comparison. 

Based on that decision, we will either handle the expression as a 
sum or as a product. 

Slide 8.3.14 
We can keep working our way through the implementation. For 
example, to deal with "sum" expressions, we can go back to 
what our formal math analysis said. In particular, we need to 
take the derivatives of the subexpressions, then "add" them 
together (symbolically). To do this, we take the cadr of the 

expression, which gets out the first part of the sum, and apply 
deriv to it to get the symbolic derivative. We do the same 

thing with the other part of the sum. If we implement deriv 
correctly, this should recursively return symbolic expressions 
for each part. Then, to create the symbolic sum, we need to 
convert the result to the appropriate form, namely a list with the 

symbol + at the front. Notice how deriv thus decomposes the problem into simpler versions of the same 

problem, and then constructs a new form to return, based on those parts. 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 8.3.15 
So now let's try it out, using the example of the derivative of 
(+ x y) with respect to x. Instead of getting what we 

might expect mathematically, namely 1, we get (+ 1 0). 

Technically these are the same thing, but the returned form is 
not as satisfying as just returning the simplest possible form of 
this expression. Notice why this happens. Our procedure always 
blindly breaks out the pieces of a sum, applies deriv, and 

then glues back together. It doesn't try to simplify the result. 
The underlying reason, which often happens in direct 
implementations of methods, is that the list structure of the 
input expression will be exactly preserved in the output, we 
simply replace the expression at each element of the list with that expression's derivative. 
What if instead we wanted our system to simplify things to more basic terms, thus not preserving the list structure 
of the input expression? 

Slide 8.3.16 
We'll consider that question in the next section. But first, let's 
pull out the key lessons we have seen in taking a direct 
approach to implementing a system. 
First, in almost any system, our program will change after our 
initial design. In this case, we made an assumption that we 
didn't realize, namely that the structure of the input list would 
be preserved. We didn't observe this till we ran some test cases 
(which is often the case in real systems), and now we need to 
try to go back and change our code to reflect a better design. 
But this is hard in this case, mostly because our code as it 
stands is hard to read, that is, to figure out which parts of the 
code are handling which parts of the problem. Moreover, 

suppose we want to add new expressions to our system, things other than sums and products. This is hard to do, 
because we have built our code explicitly on the assumption that there are two choices for expressions. And 
suppose that we decide we want to change the representation of our expressions, for example, to put the operator in 
the middle, more like real algebraic expressions. This is hard to do because we have used the actual list selectors 
and constructors directly, rather than isolating them behind a data abstraction. 
So the bottom of the slide lists a summary of the causes of these problems, that is, the things we should probably 
change to build a more flexible system. 

6.001 Notes: Section 8.4




6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

Slide 8.4.1 
So let's take another run at trying to build a symbolic 
differentiation system. Let's create a new implementation that 
takes advantage of these lessons. In particular, we need a better 
top-level design decision based on types of expressions. We'll 
use cond to handle our decisions based on types, giving us 
more flexibility that having just two choices at each stage, 
which is what if assumes. And, we'll isolate our data 
representation from its use, by building a true data abstraction, 
with an abstraction barrier between the user and the 
implementer. 

Slide 8.4.2 
If we are going to use cond to handle the dispatch to methods for 
different types, we'd like to have predicates that identify explicit 
types. So we'll gather together into a single procedure all the tests 
we need to identify a specific type of expression, for example, to 
determine if an expression is a "sum". 
And we'll do the same thing for every other type of expression we 
want to handle. 

Slide 8.4.3 
While it is easy to see that we need to do this for compound 
expressions, note that we have an implicit assumption in our 
earlier implementation about the representation of simple 
expressions. For example, we have directly relied on the fact that 
a variable was represented as a symbol. But we should really 
isolate this fact and check explicitly for types of simple 
expressions as well. 
Thus to check if an expression is a variable, we should actually 
first check that it is not a compound expression, then check that it 
is actually of the form we are using to represent variables, in this 
case, symbols. Note the use of the predicate symbol? to do this. 

Slide 8.4.4 
The second thing we need to do is truly implement a data 
abstraction. We need to eliminate the dependencies within the 
code on the explicit form of the representation. Thus, within the 
code we should only be using constructors and selectors, which 
will shield the choice of representation from the use of the 
abstraction. 
Here, for example, is a constructor for "sum" expressions, with 
one of the associated selectors. By creating this barrier between 
code that uses expressions (e.g. deriv) and the actual 
representation, we are now free to change that representation. As 
long as the contract between constructors and selectors is 
preserved, the code that uses the abstraction will still work. 

Obviously we could complete this representation for sums, for products, and for any other expressions we want in 



6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. 

our system. 
Slide 8.4.5 
Now let's pull these new ideas together into a better deriv 
procedure. The arguments are the same as before. The top level 
structure, however, has a different form. Here we have a large 
cond expression, where each clause dispatches on a different 
type of expression. Notice the nice form here. Each clause has a 
predicate that checks the type for each kind of expression, starting 
with the simpler expressions. Associated with each type is the 
method to apply for that type. Notice in particular the form for 
"sums". We use the selectors to get out the pieces, we recursively 
apply deriv to those pieces, then we use the constructor to glue 
the pieces together into the correct form. 
So why bother to go to all this trouble? Since by doing this, 
deriv only uses selectors to get at pieces, we can now freely change the underlying representation without 
causing any damage to deriv or any other procedure that uses the selectors and constructors. 

Slide 8.4.6 
Let's drive this point home with an example. Here again is our 
original example, including the case where it seemed to return the 
"wrong" answer. Having separated out a clean data abstraction, 
we can fix this problem very easily, without having to touch 
deriv. 
In particular, let's change our constructor. When we go to create a 
sum, let's first check to see if we can simplify the expression. So 
instead of just creating a list starting with the symbol "+", we'll 
first see if the two other expressions are numbers. If they are, let's 
actually add them together. Look very carefully at this. In the case 
that both expressions are numbers, we return as the expression the 
value obtained by applying the operator associated with + to 

those values, that is, we don't create a list here, we return a numerical value! 
In the other cases, we do return a symbolic expression, simply choosing to put the number first if there is one. 
The key issue is that we have only changed one thing in our system, a constructor. What happens to the full 
system? 
Slide 8.4.7 
.. well it nicely gives us the change we wanted. In this simple 
case, it returns the value of the numeric sum. 
To summarize, by isolating data representations from data use, it 
becomes much easier to make changes in the behavior of our 
system without requiring detailed and intertwined coding 
changes. This leads to cleaner code, which is much easier to 
maintain and modify. 


	Local Disk
	6.001 Structure and Interpretation of Computer Programs. Copyright © 2004 by Massachusetts Institute of Technology. All rights reserved


