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6.002 Circuits and Electronics, Spring 2007 
Transcript – Lecture 12 
 
Good morning. Today we move in the direction that takes a big turn 
from the direction we have been going in so far. All the devices we 
have had up until now, resistors and voltage sources, and even your 
digital devices like the AND gate or the inverter and so on had a very 
specific property. 
 
We didn't dwell on that property, but that property was that these 
were not what are called memory devices. In other words, the outputs 
at any given time are a function of the inputs alone. In other words, if 
you took your inverter or your NAND gate for that matter and you 
build a circuit comprising 50 NAND gates connected in structures that 
we have talked about, you apply an input and boom you get an 
output. 
 
And your output is a function of the inputs alone, right? The same 
thing with your resistors and voltage sources. At any given point in 
time your output VO of T was some function of the input VI of T. 
 
What we are going to do today is discuss a new element which will 
introduce a whole new class of fun stuff for all of us to deal with. And 
that is called storage. In other words, the output of a circuit is now 
going to depend not just on the inputs but it is going to depend on the 
background or it is going to depend on where the circuit has been in 
the past. 
 
So past is going to matter. It is a very fundamental difference. And 
what I would like to do is start by giving you folks a little bit of a 
surprise. I am going to do a little demo taking two of your inverter 
circuits. 
 
I am going to start by taking a couple of inverters. Remember, I am 
using this structure here as an inverter. And I am going to couple this 
to another inverter and take an output C, some VS, some load 
resistance RL, my B terminal and my A terminal. 
 
So I'm going to apply some input between ground and my A terminal. 
And for fun I want to apply a square wave at the input. A square wave 
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between zero and 5 volts. And this is how my time goes. Let's assume 
that VS is 5 volts. 
 
So what I am going to do is plot for you the behavior of this inverter. I 
am going to plot for you A, which would look like this. I am going to 
plot for you B, which would be the inverted wave form. 
 
And then plot C, which would be a wave form that looks like this again. 
Let me do a plot here. So this is A. -- and so on. Time goes this way. 
And let's say this is between zero and 5 volts. And B should be an 
inverted wave form that should look like this. 
 
If all that we believe of the world so far is true then this is how things 
should behave, so C should look like this. This is what the world should 
look like and if everything that you learned about is true and correct 
and all of the good stuff. 
 
Let me show you a little demo and see if I can try to pull the rug out 
from under all that you have learned so far and show you some 
surprising stuff. Here are the three wave forms that I showed you up 
here. 
 
This is my A. This is my A wave form. This is the B wave form. Notice 
that B, as you expect, is an inverted form of A. And this is C. We all 
expect this, correct? But what I am going to do is let me expand the 
time scale on this so that I can look at these transitions a little bit 
more carefully. 
 
I am just going to expand the time scale. There you go. All I have 
done is expanded the time scale and spread that out a little bit. And 
what you see there is quite different from what you expect. 
 
A is a square wave as expected, but B is stunningly different. It is a 
zero as expected because this is a one. But here I get some really 
strange behavior, behavior that is like nothing on earth. Like nothing 
you have seen before. 
 
And then, of course, it becomes a one eventually, but there's some 
really, really shady stuff going on here. And so far you are not 
prepared to deal with this. We have not given you the facility to deal 
with his issue. 
 
What is the problem with this? We could say who cares? What is the 
problem with this? Let's look at the result. I am looking at this, I am 



focusing on this piece here. And notice that instead of being a sharp 
rise it looks like this. 
 
It is going up a little bit more slowly. What kind of problem would that 
create? The problem that it creates is the following. Let me play 
around with this graph a little bit more. What I am going to do is just 
take this output here, the C output and line it up against the A output. 
 
And so I am going to line up the C wave form on top of the A wave 
form. So you can see for yourself if something really, really strange 
and nasty is happening, I am just going to move up the C wave form 
and line it up. 
 
What is happening out there? If you look carefully, what you observe 
is that the C wave form transitions just ever so slightly later than the A 
wave form. Look here. And I claim that it is because of this. 
 
Because of this, the C wave form falls just a little bit later, and that 
little thing we see out there is a delay. So nothing you have learned so 
far prepares you for this. Suddenly, instead of the output exactly 
following the input, my output is following the input but a little bit 
later. 
 
And it is this fact of life that things happen a little bit later, is really the 
reason why each of you and all of us needs to buy new computers 
every couple of years. This simple basic fact. If this fact of life didn't 
exist, you would buy one computer and be done with it for life. 
 
Intel would make gobs of money one year, and so would Dell and 
Gateway and so on, and then no more. That's it. This is it. But because 
of this a little itty-bitty difference here the entire semiconductor 
technology is charging along trying to do something about that. 
 
You buy newer and newer computers each year. It turns out this little 
itty-bitty thing here, that is called the delay, the inverter delay. And it 
happens because of a specific element that has been introduced here 
that we have not shown you so far. 
 
And a large part of the semiconductor industry and follow-on courses 
and design and so on focuses on how could I make my delay smaller, 
how can I get to be faster and faster and faster? This relates to how 
fast we can clock your Pentium IV. 
 



Remember it came all the way to 1.3 gigahertz? What's the fasted 
Pentium money can buy today? What is the fastest P4? Oh, 3.2 have 
come out? I don't know. Ken claims 3.2. But, yeah, there you go, 3.2 
gigahertz. 
 
It all has to do with this little itty-bitty thing. You saw it for the first 
time here. When some of you become CTOs at Intel and so on, just 
remember that it all began on October 16th with this little rinky-dink 
thing here. 
 
What you are going to learn now is some really cool stuff that has 
huge implications for life. So why does that happen? Why did this 
transition happen just a little bit later? The reason is that remember 
when this wave form reaches VT, the threshold voltage of this 
MOSFET, this guy is going to switch, right? So because of the slower 
rise of the voltage, the VT is going to be reached a small amount of 
time later. 
 
So I am going to hit VT slightly later. And because of that this guy is 
going to transition just a bit later because this intermediate wave form 
B is slower. It hits VT just a little bit later than if it would have made 
an instantaneous transition. 
 
And therefore my output falls just a little bit later and this gives rise to 
my delay in the inverter. We can call that d if you would like, some 
delay. In your course notes, this material is covered in Chapters 9 and 
10. 
 
That was to kind of motivate why we are going to be doing all that you 
we will be doing. Don't anybody come within a foot of this even by 
mistake. I mean it. It is pretty deadly stuff. Today we will talk about 
the capacitor. 
 
And in the next couple of lectures I am going to tie it all together and 
show you how this relates to that. I will show you exactly how the 
delay happens. You can compute it based on some simple principles 
that you will learn about in the next couple of lectures. 
 
What I am going to do is first of all show you, I claim that that delay 
happens because of the presence of a capacitor somewhere in there. 
What I will do now is take you into a closer look, take a closer look at 
the MOSFET and show you were the capacitor is. 
 



This is the MOSFET that you have seen so far, drain, gate and source. 
This is called an n-channel MOSFET. And what I am going to do is 
dissect this and show you what is actually happening, what this looks 
like on silicon. 
 
So here is my slab of silicon. It is very thin. And let's say this is, I 
won't go into details here. You will learn a lot more about this in future 
device classes like 301 and so on, but suffice it to say I will just 
introduce it here to give you a sense of where the capacitor is. 
 
This is p-type silicon. And the way you build a MOSFET is you create a 
couple of tubs in which you dope to be n-type. The basic silicon is dope 
p-type. And this guy here is n-type. And what you do is a thin oxide 
layer is placed on top of that and then on top of that a thin metal 
layer. 
 
This is a metal layer. This is a thin piece of oxide, silicon dioxide. And 
this is my P substrate. Now this is a little metal layer that is really a 
wire on top of the silicone. This metal layer could be some sort of a 
wire that meanders around on the surface of silicone. 
 
And this is a wire that connects to the gate. This is the gate of my 
MOSFET. And this guy here is the drain. And this guy here is the 
source. And this is my gate. So there is a little piece of metal here. 
 
This is this piece of metal here. And there is a piece of oxide and then 
my silicone substrate. Notice that this is my oxide. When I apply a 
positive voltage to the gate here with respect to the substrate, what 
happens is that I draw up negative charges. 
 
I draw up electrons here into this channel region and I have 
corresponding plus type out here so that I get a view here that looks 
like a couple of plates. And I end up with an oxide in the middle. There 
is no connection. 
 
Two plates separated by a small distance with plus q and minus q on 
the plates. And, because of that, what ends up happening here is that 
this piece behaves like a capacitor. So a capacitor has two plates with 
a thin insulating material in the middle with some permittivity epsilon. 
 
And so I get a little piece of a capacitor here. That is the capacitor that 
is forming. I did not set out to build that capacitor, but there is a 
capacitor nonetheless. So when I apply a positive voltage at the gate, 



negative electrons are pulled up here which forms a channel, and then 
a current can then flow. 
 
And that is how the MOSFET turns on. So n-type electrons back to n-
type, and I get electron flow here and that gives me my channel. This 
is just kind of devices in four minutes or less. You will do an entire 
course on this, if you like, if you take 301. 
 
What we do is to be able to capture the behavior that we just saw, the 
funny delayed behavior, we have to augment our model. We have to 
introduce a new element. So what we do is here is a MOSFET, gate, 
drain and source. 
 
And notice here we model this by putting a little capacitor, CGS 
between our gate and the source. So this becomes a simple model for 
our MOSFET device which is the good old gate drain source device 
from the past with a little capacitor CGS having some value for CGS in 
maybe ten to the minus 14 or thereabouts farads. 
 
So that is a little capacitor that has come about in this device that we 
fabricated here. It is that capacitor that is at between node B and 
ground because it is between the gate and the source of the second 
inverter. 
 
And it is that capacitor that is playing the games that we saw out 
there. So let's look at some of the behavior of an ideal linear capacitor. 
A capacitor, as I said, has a couple of plates. There are a couple of 
plates. 
 
Between the plates is some dieletric, permittivity epsilon. Let's say the 
area of the plates is A, and let's say the plates are separated by a 
distance D. I get some charge here, let's say q. So q and minus q on 
the capacitor. 
 
And the capacitance C is given by epsilon A divided by D. Epsilon, as I 
said, is the productivity of the dielectric. So if it is free space then it 
would be epsilon zero which is the permittivity of free space. 
 
That is the capacitance in farads. And the symbol looks like this. 
Capacitor C. Voltage v. Current i. So this, much like the resistor, 
voltage source and so on, this now becomes a primitive element in 
your tool chest of elements like the voltage source and so onn. 
 



Capacitance with the voltage v across it and a current i. And I have 
assigned the associated variables here according to the associated 
variable discipline. A question to ask ourselves is remember we said 
we are all now in a playground from all of nature, in this playground 
where the lumped matter discipline holds? And also remember that we 
said that for the lumped matter discipline to hold we have to make a 
couple of assumptions. 
 
One of those assumptions was that dq/dt, for all their elements should 
be zero for all time. So right now what about the capacitor? It has got 
some charge q. So charge must have built up somehow. Does that 
mean that I lied all along, that we are no longer in this playground, 
that we have been ejected from the playground because of the 
capacitor, or are we still in the circuits playground in which the lumped 
matter discipline holds and all good things happen and so on? It seems 
like a contradiction, doesn't it? I took you from Maxwell's playgrounds 
to the EECS playground where I said the lumped matter discipline 
holds. 
 
And one of the foundations of the LMD was that dq/dt should be zero 
for all time inside the elements that we are going to deal with. And 
right now boom, it's not four weeks into the course and Agarwal 
introduces an element and it has q in it. 
 
It turns out that the capacitor also adheres to the lumped matter 
discipline. Remember the discipline says that dq/dt is zero for all time 
within elements. So I am going to be clever. What I am going to do is 
I want to choose element boundaries in a very cleaver way. 
 
Notice that if I have q here on this plate then I get minus q on the 
other plate. So if I take the whole element, the element as a whole, if 
I am careful in terms of how I package my boundaries, if I put both 
my plates inside my element boundary then I still do get the net 
charge being zero. 
 
So dq/dt is indeed zero for all time provided I make sure that my 
element has both the plates. Therefore, if you come across somebody 
else that gives you an element that says I have an idea. Let's create a 
new branch of electrical engineering in which we model the capacitor 
not as one element for two plates, but let's build a capacitor by 
combining two new elements, two garbage elements called G1 and G2. 
 
G1 is like the top plate. G2 is the bottom plate. I put them together 
and I get a capacitor. But notice if I just pick one plate then the 



element G1 will not adhere to the LMD. It adheres to the LMD because 
I choose my element boundaries in a way that both plates come within 
it. 
 
So it is very fundamental and key. And you can read a lot more about 
it in the course notes. I purposely dwelt on that simple point because I 
think it is foundational and important. And you really need to 
understand that the capacitor does satisfy LMD. 
 
We are still in the good old playground. A few simple facts here. These 
are in the notes. And you have also seen this before, I am sure. I can 
relate the charge to the capacitance and the voltage as q is equal to 
Cv. 
 
And q is in coulombs, this is in farads and this is in volts. So there is 
some charge q stored on the capacitor and it is in coulombs and q is 
equal to Cv. So I can differentiate this with respect to time to get the 
current, and that becomes i=dq/dt. 
 
So the current at any given time is dq/dt. And so I substitute for q in 
terms of Cv here. That is what I get. So the current i=d(Cv)/dt. A 
6.002 assumption, capacitance in general can be time-varying. 
 
I can get time-varying capacitors. In fact, there are some sensors 
which are capacitive. And, as I talk, my sound waves can change the 
pressure on the top plate of the capacitor. And move the top plate of 
the capacitor, thereby changing the capacitance by moving the plate. 
 
Remember d here, as the plate moves closer I get a higher 
capacitance. So we won't be dealing, unless explicitly said so, with 
time-varying capacitances. So what we can do is 6.002 allows us to 
write Cdv/dt. 
 
So my current source capacitor is Cdv/dt. I can also write down the 
energy, capacitors store energy. E=1/2Cv^2. I am sure you have seen 
all this before in physics and so on. That is the amount of energy 
stored in the capacitor if it is holding a charge q. 
 
Let me do a little demonstration for you. They don't make glasses like 
they used to. Our friend Lorenzo has charged up this capacitor. It is a 
huge capacitor. It is a 250 volt capacitor so it is nasty. 
 



He has charged it up and has kept it there. And to show you that it 
does contain stored charges it has been sitting there holding charge. 
Maybe the first row should go backwards, just step back for a second. 
 
I think you guys would be safe but I just don't want to take any 
chances. This is holding a bunch of charge. It is kind of sitting there. If 
I short the terminals it should try to say oh, I've got a path, let me get 
my charge out. 
 
All right. Let's do it. This is always a scary moment for me. And I say a 
little prayer before I do this. Good? OK. Gee, you guys would love to 
see me getting fried, huh? All right. Let's see. 
 
So it did contain charge. So there is a reason why Lorenzo puts one 
hand inside his pocket when he shorts it, because there is a natural 
tendency to hold the wire with both hands, and la, la, la, la, la and put 
it across the capacitor. 
 
By doing this you are guaranteed that you will just be touching it with 
one hand. Hopefully you folks will remember for life that a capacitor 
can sit around and hold its charge for a while. All right. 
 
That is enough of fun and games. Let's get on with our business of 
building circuits. What I am going to do is, as I promised you, I am 
going to close the loop on that example by halfway through the next 
lecture. 
 
I'm going take you on a bit of a journey involving capacitors and 
resistors and involving some analysis, and then we will close it all up 
for you at about the middle of next lecture. What I would like to do 
next is here is a new element. 
 
And let's do some fun stuff with elements. Well, you know about 
voltage sources, you know about resistors, let's put them together and 
see how they behave. Let's have a capacitor here, C, vc(t) and some 
current i. 
 
What I am going to do, in general, whenever I have something new or 
something strange, let's say like a capacitor or some other device. It is 
interesting to model the rest of the circuit behind it if it contains only 
resistors and voltages and linear elements as a Thevenin equivalent. 
 
So let me do that. This is R and this is vi. This stuff in the back is my 
standard pattern, voltage source in series with a resistor, and I 



connect that across my capacitor. But remember, although you saw 
those funny wave forms and so on, the capacitor is a linear device. 
 
Because you can see from here that the current relates to dv/dt. That 
is a linear operation. You don't see V squareds and Vis and things like 
that in there. It's is a linear device. Let's go back to our trusty old 
method, the node method. 
 
If you just blindly apply the node method and simply grunge through a 
bunch of math, you should be able to get to the answer, that is for 
some voltage v or some form of voltage vi, I should be able to figure 
out what vc looks like. 
 
So let's do that. This is the node that is of interest here with the 
unknown node voltage vc. So let me apply the node method. (vc-vi)/R 
is the current going this way. That plus the current through the 
capacitor should equal zero. 
 
And what is the current through the capacitor? The node method tells 
me that, get the current in terms of the element values. We know that 
the current is given by CdvC/dt.=O. Just shuffling things around a little 
bit, I can write RC dvc/dt+vc=vi. 
 
We are writing the node equation and then getting the equation that 
characterizes this little circuit. Notice here that this has units of volts. 
And since I have time here, this also must have units of time. 
 
Let's go about solving this little circuit and understanding how it 
behaves. The specific example that we will look at looks like this. Let's 
say the capacitor voltage at time T=0 is V0. This is given. 
 
So at time T=0, I am telling you that the capacitor contains a charge. 
And because of that there is a voltage V0 across it. That capacitor had 
a voltage of 250 volts across it and most of the devices we deal with in 
laptops and so on today, like the Pentium IV, voltages are on the order 
of 1.5 volts, very small voltages. 
 
So that is the value in the capacitor, the voltage. That is called a state. 
This is called the state, capacitor state. It is the state of the capacitor. 
And I also give you that vi(t)=VI. So my voltage is VI. 
 
And somehow, I am not telling you how, but some how it arranged to 
have the capacitor voltage be V0 at time T=0. Now I want to look to 



the solution to this for t greater than or equal to zero. And in that time 
my voltage vi is at some capital VI, some DC voltage VI. 
 
So I am going to solve the differential equation RC dvc/dt+vc=vi given 
these two values. Input is DC voltage VI and VC0 is V0, the initial 
charge in the capacitor. So from now until almost to the end of the 
lecture, it is just going to be math by solving this very simple first 
order differential equation. 
 
And the key here will be that throughout 6.002 we will be following 
one method to solve these. There are many methods to solving 
differential equations, and we will follow one method. That method is 
called the method of homogenous and particular solutions. 
 
In 1802, I believe, you would have learned maybe this, and certainly 
other methods. You can use any method to solve it. We will just stick 
to one method. And this is also used in the course notes. 
 
In this method what we do is take the solution VC by finding two other 
components. One is called the homogenous solution. And summing 
that up with the particular solution. And that is the total solution. 
 
So total solution is the sum of the homogenous and the particular 
solutions. And the method has three steps. As I said before, we will be 
using this method again and again with every differential equation that 
we encounter in this course. 
 
And you won't encounter a while lot. The first step we find the 
particular solution. The second step, find the homogenous solution. 
The total solution is the sum of the two. And then find --- There will be 
some unknown constants depending on the equation that you have. 
 
And in the end we simply find the unknown constants by applying the 
initial conditions that we have. Boom, boom, boom. Particular. 
Homogenous. Find constants. Three things. So let's go about solving 
this equation and apply those three conditions. 
 
Again, remember, what I am doing now for the next 10 minutes or 15 
minutes is using math that you know about to simply solve this first 
order of differential equations. There is nothing really new that I am 
going to talk about here. 
 



One is to find the particular solution vCP, which will then be added into 
the vCH to get me the solution. So the way you find the vCP is you 
find any solution that satisfies this equation. This is the equation. 
 
You find any solution that satisfies it. And find the simplest possible 
solution that money can buy. Find it. That's the particular solution. Any 
solution is fine. In this case, a really simple one would be vCP equals 
VI. 
 
Let's see if a constant works. One thing you will realize in differential 
equations is that they are actually much simpler than they seem. And 
the reason is that almost every time you have to assume you know 
the answer, and then you are checking to see what you assumed was 
correct. 
 
Assume the answer is this like you are really smart, and then check it 
out and say oh, yeah, that must have been the answer. So here we 
assume that I think VI is going to work so let's try it out. Substituting 
in here. 
 
RC dvc/dt is 0. vi is a constant. So I get vi equals vi, so therefore this 
is a particular solution. Done. I substitute vi here. So dvi/dt=0. This 
vanishes and vi=VI. Bingo. Therefore, VI is a solution to this equation. 
 
So I am done with my vCP. And in general what you have to do is use 
trial and error. By trial and error try out a bunch of solutions until you 
get lucky. In general, again, in all of 6.002 for many of the excitations 
a simple constant usually suffices. 
 
Our second step is to find the homogenous solution. And we can also 
do that very quickly. And to do that we have to find a general solution 
to the homogenous equation. The homogenous equation is the same 
differential equation but with the drive set to zero. 
 
We want to follow a set pattern to solve the differential equations 
here, and the set pattern is find vCP, vCH, find constants. And to find 
vCH we are also going to follow a set pattern to find the homogenous 
solution. 
 
So we set the drive to zero, so vi is set to be zero. And I need to find a 
general solution to this. As I promised earlier, diff equations are really, 
really simple because the way we are going to solve them is we are 
going to assume we know the answer and then go check it. 
 



So let's try Ae^st. Let's try and see if this can solve this particular 
equation for some values of A and S. I am telling you that the solution 
is going to be of this form. Assume it. And then simply go ahead and 
find me A and S, and do that by substituting it back into the equation 
and find out the corresponding As and Ss. 
 
So let's go ahead and do that. I get RC. I substitute this back up so I 
get dAe^(st)/dt+Ae^st=0. And let me plug that in and see what 
comes. I get RCAse^st+Ae^st=0. I want to discard the trivial solution 
of A being 0. 
 
That is a trivial solution so I will discard that. And what I will do is 
cancel out the As from here, assuming A is not zero, and cancel e^st 
here. And what is left is RCs+1=0. What this is saying is that if I can 
find an S such that this is true then Aest is a general solution to my 
homogenous equation. 
 
This is easy enough. And so S=-1/RC. If I choose my S to be -1/RC 
then the simple math that I have gone through shows me that this 
must be the solution to the homogenous equation. Or in other words 
vCH=Ae^(-t/RC). 
 
All this is saying is that Ae^(-t/RC) is a solution to my homogenous 
equation. A is an unknown constant. A is some constant. I don't know 
what that is yet. Notice RC has popped up again. And the cool thing 
about RC is that, this is time, this also has units of time. 
 
We commonly represent RC as some time constant tau, as units of 
time. Associated with that circuit is the time constant tau, which is 
simply RC. I commonly write this as Ae^(-t/tau). I am very the end 
here. 
 
I have the particular solution here. I have got the homogenous 
solution there. I need to tell you about something else. The way I 
found the homogenous solution was in four steps. I assumed a 
solution of the form Ae^st. 
 
I created this equation here in S. This is called the characteristic 
equation for that circuit. We will see this time and time again for RC 
and other forms of circuits. Assume a solution of this form. 
 
Construct the characteristic equation. Find the roots of the 
characteristic equation. In this case it is an equation in S. So this is 
the root. And then form the solution based on that root. Four steps. 



 
Ae^st, characteristic equation, root and then write down the general 
homogenous solution. Four steps there. And finally I want to write 
down the total solution. And the total solution is simply vCP+vCH. 
 
And vCP was VI and vCH was Ae^(-t/tau). tau was simply RC. That is 
my solution. Now, remember the last step. The last step was form the 
total solution and find out the remaining constants. Find out the 
remaining constants by using my initial conditions. 
 
At t=0, I know that vC=V0. I know that. And so therefore I can 
substitute t=0 to find the constant. So I know that VO=VI+A. t=0, this 
thing becomes 1, and so I get this equation from which I get A=V0-Vi. 
 
In other words, my solution vC is simply VI+(VO-VI) e^(-t/tau). So 
the last 15 minutes have just been math. No electrical engineering 
here, but electrical engineering stopped at the point where you wrote 
this differential equation down, went through a bunch of math and 
came up with a solution. 
 
Purely mathematically. So here I simply used math to get you the 
solution. And, as I have been promising you throughout this course, in 
the next lecture I will give you an intuitive EE method of doing it. 
 
Real electrical engineers, real EECS folks don't do it this way. Real 
EECS folks do it intuitively. And I will show you how to do it in four 
easy seconds in the next lecture. But you need to understand the 
foundations of how this comes about, and so this is the answer. 
 
You can also get the current iC is simply Cdvc/dt. I won't do that for 
you, but you can simply differentiate it and get the current. So I can 
plot for you vC, time t, vC. The intuitive way of looking at this is I have 
VI which is the final value of the voltage. 
 
When t is infinity this part goes to zero so the vC is simply VI. And 
then there is a component V0-VI which decays according to this 
starting out at an initial value of V0. Notice when t is zero vC is V0, 
you can see that in the equation, and so it starts out at V0 and ends 
up at VI. 
 
I start here, I end up here. And this portion V0-VI decays out over 
time like this. And this decay is governed by the RC time constant or 
tau. I am going to show you very quickly a couple of examples of wave 
forms, one that goes like this and one that looks like this. 



 
This is when I start with some value V0 and I don't apply any input, it 
should decay down to zero, t, t, vC, vC. If I apply zero for VI then this 
should simply decay down to nothing over time. And if I apply some VI 
but there is no state in the capacitor then that same equation is going 
to look like this. 
 
You can go and confirm for yourselves that when I apply some input 
but the capacitor has zero state, I start at zero, I finish up at VI and 
my wave form looks like this. There you go. That's the first one. 
 
The second one where I have 5 volts on the capacitor and no input. 
Assume that at time equals zero I take away an input, short the input 
voltage to ground for example, apply zero volts. You will see the decay 
from 5 volts to 0 volts. 
 
And in the first case I start with zero volts in my capacitor, I apply 
input of 5 volts, and notice that at t=0 the capacitor rises up to that 
level. So notice that these circuits with capacitor and resistors are 
typified by wave forms that are exponential rises and exponential 
decays. 
 
We will see more of that next time. 


