Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

6.002 - Circuits \& Electronics
Spring 2007
Homework \#9
Handout - S07-45

Issued 4/12/2007 - Due 4/20/2007

Helpful Reading for this Homework: Chapter 12.

Exercise 9.1. Find the inductance of the all-inductor network, and the capacitance of the all-capacitor network, shown below.

Exercise 9.2. Each network shown below has a non-zero initial state at $t=0 \mathrm{~s}$, as indicated. Find the network states for $t \geq 0 \mathrm{~s}$. Hint: what equivalent resistance is in parallel with each capacitor or inductor, and what decay time results from this combination?

Problem 9.1. At $t=0^{-} \mathrm{s}$, the networks shown below have zero initial state; the inductor current $i(t)$ and the capacitor voltage $v(t)$ are both zero at $t=0^{-} \mathrm{s}$. At $t=0 \mathrm{~s}$, the current source produces an impulse of area Q, and the voltage source produces an impulse of area Λ.

A Derive the differential equation that relates $i(t)$ to $I(t)$ and $v(t)$ to $V(t)$. Hint: consider using Thevenin and/or Norton equivalents to simplify the work.

B Find the inductor current $i(t)$ and the capacitor voltage $v(t)$ at both $t=0^{+} \mathrm{s}$ and $t=\infty$. Feel free to determine the states through either physical or mathematical reasoning. However, explain your reasoning in any case.

C Next, find the time constant by which each state goes from its initial value at $t=0^{+} \mathrm{s}$ to its final value at $t=\infty$.

D Using the previous results, and without necessarily solving the differential equations directly, construct $i(t)$ and $v(t)$ for $t \geq 0 \mathrm{~s}$. Alternatively, find $i(t)$ and $v(t)$ by any means you choose, but be sure to explain your reasoning.

E Verify that the solutions to part \mathbf{D} are correct by substituting them into the differential equations found in part \mathbf{A}.

Problem 9.2. This problem examines the relation between transient responses of linear systems.

A Find the inductor current $i_{L}(t)$ for $t \geq 0 \mathrm{~s}$ in response to the current step $I(t)=I_{\text {Step }}(t)=I_{0} u(t)$. Assume that $i(0)=0$.

B Find the inductor current $i_{L}(t)$ for $t \geq 0 \mathrm{~s}$ in response to the current step $I(t)=I_{\text {Ramp }}(t)=I_{0} \alpha t u(t)$. Again, assume that $i(0)=0$.

C The step input can be constructed from the ramp input according to $I_{\text {Step }}(t)=\frac{1}{\alpha} \frac{d}{d t} I_{\text {Ramp }}(t)$. Show that their respective responses are related in a similar manner. (Note: you could have used this relation to solve part \mathbf{B} given your answer to part \mathbf{A}.)

D Would the result from part \mathbf{C} hold if $i(0) \neq 0$? Why or why not?

Problem 9.3. The network shown at the top of next page includes a switch with three positions: A, B and C. Prior to $t=0 \mathrm{~s}$, the switch is in Position B, and the inductor current $i(t)$ and the capacitor voltage $v(t)$ are both zero. The voltage source V is constant.

A At $t=0$ the switch moves to Position A, and it remains there until $t=T_{1}$. Find $i(t)$ and $v(t)$ for $0 \leq t \leq T_{1}$.

B At $t=T_{1}$ the switch moves to Position C without interrupting the current $i(t)$, and it remains there until $i(t)$ goes to zero, at which time the switch moves back to Position B. Define the time at which $i(t)$ goes to zero as $t=T_{2}$. Determine T_{2}, and find both $i(t)$ and $v(t)$ for $T_{1} \leq t \leq T_{2}$.

C The switch remains in Position B until $t=T_{3}$. Find both $i(t)$ and $v(t)$ for $T_{2} \leq t \leq T_{3}$
D At $t=T_{3}$ the switch moves again to Position A, and it remains there until $t=T_{4}$. Find $i(t)$ and $v(t)$ for $T_{3} \leq t \leq T_{4}$.

E Finally, at $t=T_{4}$ the switch moves to Position C, and it remains there until $i(t)$ first goes to zero, at which time the switch moves back to Position B. Define the time at which $i(t)$ again goes to zero as T_{5}. Determine T_{5}, and find both $i(t)$ and $v(t)$ for $T_{4} \leq t \leq T_{5}$.

F Sketch and clearly label $i(t)$ and $v(t)$ for $0 \leq t \leq T_{5}$

Problem 9.4. This problem is continuation of Problem 9.3. It explores the use of energy conservation to analyze the operation of the network described therein.

A Determine the energy stored in the inductor at $t=T_{1}$.
B The energy stored in the inductor at $t=T_{1}$ is fully transferred to the capacitor at $t=T_{2}$. Use this fact to determine $v\left(T_{2}\right)$. This answer should match your answer in part B of Problem 9.3 when the latter is evaluated at $t=T_{2}$.

C Determine the energy stored in the inductor at $t=T_{4}$.
D Use energy conservation to determine the energy stored in the capacitor at $t=T_{5}$, and then determine $v\left(T_{5}\right)$. This answer should match your answer to part E of Problem 9.3 when the latter is evaluated at $t=T_{5}$.

E Now let the switch move repetitively through the cycle of Positions B to A to C to B. Assume that in each cycle the switch remains in Position A for the duration T. Further, assume that switch always moves from Position C to Position B when $i(t)$ reaches zero. Assuming that v and i are initial zero, determine v at the end of the $n^{t} h$ switching cycle in terms of n, C, L, T and V.

