
 
MIT OpenCourseWare 
http://ocw.mit.edu
 
6.002 Circuits and Electronics, Spring 2007 
 
Please use the following citation format: 
 

Anant Agarwal, 6.002 Circuits and Electronics, Spring 2007 
(Massachusetts Institute of Technology: MIT 
OpenCourseWare). http://ocw.mit.edu (accessed MM DD, 
YYYY). License: Creative Commons Attribution-
Noncommercial-Share Alike. 

 
Note: Please use the actual date you accessed this material in your 
citation. 
 
For more information about citing these materials or our Terms of Use, 
visit: http://ocw.mit.edu/terms
 

http://ocw.mit.edu/
http://ocw.mit.edu/
http://ocw.mit.edu/terms


MIT OpenCourseWare 
http://ocw.mit.edu
 
6.002 Circuits and Electronics, Spring 2007 
Transcript – Lecture 11 
 
We have put some of the quiz stats here. The mean was about 75%. 
And I must tell you that that is very impressive. I guess MIT 
undergrads never cease to amaze me. And this was not an easy quiz. 
This was a relatively hard quiz. 
 
And that average implies that you guys did well on a relatively hard 
quiz. Good. Let's get back to our final lecture on amplifiers and small 
signal circuits. And as always let me start with a review. 
 
Very quickly -- -- we came up with a notation to represent small 
signals. And our notation looked like this. Our total variable was small 
and capital, and this was a DC bias and this was a small signal. 
 
This is also called the operating point. And the small signal is also 
called the incremental signal. In general, if you have some function, 
some variable of interest in the circuit, say a total variable V out, let's 
say it relates to some input variable as F of VI. 
 
So mathematically we can find out V out by simply finding the slope of 
this function at the operating point and then multiplying it by the 
incremental change in the input. Gold standard math. So we do the 
slope of this function and evaluate it at the operating point. 
 
So this would give us the slope of the function. And multiply that by 
small VI, which is incremental change. This is standard math. What 
this will tell you is given a small change in VI this function gives you, 
this expression gives you the small change in V out. 
 
And in lecture we have pretty much used this method so far, used the 
math to get to where we wanted it to be. And then the way we 
provided biasing and so on was for our amplifier in particular we had a 
bias voltage, some small signal value, VS. 
 
And this was output which was also given to be some output operating 
point plus a small change, which was a change in the output voltage. 
So what we have done here is mathematically computed small V out. 
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And what I am showing you here is to get the same effect in a circuit 
is you build your circuit and replace what used to be a total variable 
with a DC bias plus a small change. And then you will get your output 
here. 
 
And this output will relate to this input using this expression. So this is 
more review. To continue on with the math review, for our amplifier 
VO was given to be VS-K/2(vI-VT)^2 RL. So this was the output 
versus input relationship for the amplifier. 
 
And mathematically I could get the small change in the output VO by 
simply differentiating this function with respect to VI, evaluating that 
function, at capital VI and multiplying by the small change in the input. 
 
And the resulting expression that we got for small VO -- -- was simply 
minus K, this was our DC value, and RL times small VI. So we derived 
all of this the last time. So nothing new so far. So my small signal 
output was some function given by K(VI-VT)RL times small vi. 
 
And notice that this is how VI relates to VO. And this is a constant with 
respect to VI. V capital I is a DC bias, so this is a constant. So 
therefore this is the linear relationship that we had set out to get. 
 
This term here, for reasons we will see today, this term here K(VI-VT) 
is called gm. Transconductance. We will look at it in more detail a little 
later. Even more review. So I can draw the transfer function and plot 
VO versus VI. 
 
Another way to graphically view what is going on is by plotting the 
load line curve for this circuit, so this is VI. And I said we draw that by 
first plotting the -- These were our MOSFET curves. And we know that 
at some point the MOSFET gets into saturation, so this curve was 
iDS=K/2 VO^2. 
 
And to the right side of the curve the MOSFET is in saturation. And we 
said we will adhere to the saturation discipline and operate in this 
regime. When the MOSFET gets into this region it is in its triode 
region. 
 
And then we could draw the load line here. The load line codified the 
following relationship, iDS=VS/RL-VO/RL. This was a load line. So I 
have superimposed a load line on the device characteristics, and I am 
going to show you a little demonstration based on that at this point. 
 



So these curves were drawn for increasing values of VI. And if I 
choose some operating point here then this point would correspond to 
some bias, this bias point would correspond to some input voltage VI, 
a corresponding output bias VO and a corresponding current iDS. 
 
So iDS capitals, VO capitals, VI capitals represent the operating point 
values for our little circuit. So far there is nothing new. One thing we 
stopped the last time by pointing out that the gain of our amplifier, 
this is the gain, -K(VI-VT)RL. 
 
That is the gain A of the amplifier. That gain related to VI. A gain was 
proportional to VI-VT. So therefore if I increased VI, I would get more 
gain. So the question is how do we choose a bias point? And in our 
particular example, let's say we are free to play around with VI. 
 
So we play around with VI and I can choose various bias points. So 
where do you set the bias point? What are the various characteristics 
of the circuit that relate to my bias point? Well, first, of course, is gain. 
 
The gain depends on how I choose VI. I will show you that in a 
moment. The second important thing, in other words, if I choose a 
bias point that is a small VI then my gain is going to be smaller. If I 
choose a bias point that's at a much higher value of VI, I get a bigger 
gain. 
 
The second important consideration is operating range. Notice that if I 
choose a bias point here then as the input changes -- Notice VI in this 
graph goes up or down, and I would be traversing and following 
different lines here in my MOSFET characteristic. 
 
And as VI increases the operating point would come up here and so 
on. So if about this operating point I varied my input voltage VI then, 
so let's say about this operating point, if my input VI, my small signal 
VI varied about a small range then correspondingly the output value 
would vary about this part of my load line. 
 
So notice now that the operating range, how far can VI vary before the 
MOSFET goes out of its saturation discipline? Well, on the low side my 
VI can come down to here. And we looked at the operating ranges for 
an amplifier. 
 
And I can come all the way down to VT. At that point the output will 
come here. Similarly at the high end VI could get up to a high value. 



And we computed that value in the last lecture. And the corresponding 
value of the input would be here. 
 
So in some sense I can traverse all the way from here to here and 
have the MOSFET remain in saturation. Remember we are not talking 
about linearity right now, just about the valid operating range based 
on my definition which is that the MOSFET should stay in saturation. 
 
So if I chose my operating point here then I get this range here. And, 
on the other hand, if I chose my operating point to be here, for 
negative excursions of the input signal I have a very small amount 
before I hit cutoff. 
 
So if I chose my operating point here then for negative traversals of VI 
about the operating point I very quickly hit cutoff. So if I want 
symmetric swings then this is the best that I can do in terms of the 
valid input operating range if I want symmetric swings given that this 
is my bias point. 
 
On the other hand, if I chose my bias point somewhere here, or very 
carefully chose my bias point then my input can vary on a much wider 
region and still get symmetric swings. And so therefore the choice of 
bias point also influences the maximum swing range of my input 
signal. 
 
I shouldn't call this operating range. I should call it input swing range. 
We defined the valid input operating range as the range for which the 
amplifier satisfied the saturation discipline. So the two key issues, gain 
and the input swing. 
 
Let me show you a quick demo and try to point out on a graph some 
of the characteristics that relate to the matter we have been talking 
about so far. So what I show here are these curves for the MOSFET. 
 
This is VO and this iDS. This is the zero point. Ignore this line down 
here. This line up here corresponds to the output voltage VO. What I 
am going to do now is, through some careful circuit hacking, I'm going 
to show show you a load line and show you the bias point, and show 
you how the bias point can be moved up and down by changing the 
input voltage which changes the corresponding output voltage. 
 
It is hardly visible out there. Is it there? OK. It is not really clear, but 
notice that as I increase my input, I am increasing my input. My 



output keeps coming down. And I hope your eyesight is better than 
mine because I don't see a dot up there. 
 
I am amazed. This is the first time this has happened to me. That's 
OK. All right. As you can see, as I change the input value the output 
operating point changes, and the dot out there traverses, articulates a 
load line. 
 
I guess I have to believe that there is a dot out there. Next what I will 
do is show you some more fun stuff. What I will do is instead of having 
just a dot by having a DC voltage, let me apply an input sinusoid. 
 
So if I apply an input sinusoid at some bias then I should see an 
articulation of the corresponding region of the load line corresponding 
to the input. So, as you can see here, now the bottom line, here is my 
input and this is my output. 
 
And notice that this the region of the load line articulated when the 
input is of this magnitude. Now let's have some fun. As I increase my 
input, you can see that a larger portion of the load line is articulated, 
right? There you go. 
 
And as I decrease my input a smaller region of the load line is 
articulated. Let's leave it here for a moment. And what I will do next, 
this is the region here that we are looking at, let me increase the bias. 
 
If I increase the bias, if I increase VI, what do you think should 
happen to this line here? Well, if I increase the bias, the line should go 
up, right? Because remember the dot? The dot is in the middle of this 
thing here. 
 
If I increase the bias this should move up here. So that line moves up. 
Do you expect anything else to happen to that line? Pardon? It 
increases, exactly. If I increase the bias point to here then this must 
also increase because my gain has increased. 
 
Let me do that. So let me increase the input bias. Indeed notice that 
the region of the load line articulated is larger now. Let me decrease 
the bias. And notice that because the gain is smaller the little segment 
shown is also smaller. 
 
I have shown you two things so far. One is that I as I increase my bias 
the line indeed rises up corresponding to a higher value for the input 



operating point. And the second is that I get a larger swing in the 
output as I increase the bias. 
 
Just to show that for those like me who were visually challenged in 
terms of viewing that little dot up there, let me get some audio so you 
can actually hear the sinusoidal tone. It is a big annoying. 
 
As I reduce the bias the gain is decreased. As I increase the bias you 
can see that the gain is increased and the tone is louder. Let's have 
some more fun and let's play some music now. And what I am going 
to show you with the music -- The reason I play the music is not just 
for fun. 
 
Well, it's 85% fun and 15% learning. Can we turn it on for a second? 
What I would like to do is, as we play the music, the reason I am 
playing the music for that 15% is so you can listen to distortion. 
 
I want you to listen to the distortion. That is when the articulation is 
here you are not going to get much distortion. But as I get into cutoff 
you should be getting a bunch of distortion. Similarly, as you get into 
the triode region you should also be getting distortion because the 
amplification from being somewhat nonlinear here becomes highly 
nonlinear at those two points. 
 
So let's just play the signal. So volume increases, or rather the 
amplitude increases by increasing the bias. Now you should hear the 
volume go down and distortion. So notice now that the bias point is 
way down here. 
 
So the gain is very low, and plus there is a distortion because of 
cutoff. Now what I will do is blast it up here, and you will see that the 
volume has gone up but then you see distortion again. Let's see if you 
can stand the volume here. 
 
Even the CD doesn't like that. Notice that as I went up here the 
volume kept increasing because the gain kept increasing, but as I got 
into the triode region I began to lose my gain because, remember, the 
amplifier doesn't have gain in the triode region, MOSFET in its triode 
region, and we also get a bunch of distortion out there. 
 
Finally, it turns out that as people are building amplifiers -- I think this 
was in the mid to late ‘50s and ‘60s and so on. They said man, 
electrical engineers are not going to get their thing right. 
 



So they invented a new kind of music which was much more tolerant 
to distortion. And I will play that music for you. It is called hard rock. I 
challenge you to tell me it is distorting. Sounds good to me. 
 
OK. All right. That'll do it. Thank you. I hope there are no hard rock 
musicians in here who will come and beat me up after lecture or 
something. All right. Believe it or not most of that was review. 
 
There is nothing new today besides some fun and games and so on. I 
will give you a breather for five seconds before jumping into 
something even more fun. I want you to look at the middle board 
here. 
 
And, as I told you in the beginning of 6.002, engineering is about 
building useful systems. Engineering is not about showing off at math 
or saying man, I am really cool in math and stuff. Engineering is about 
building useful systems, and you want to find the simplest, easiest, 
cheapest way to get there. 
 
Unlike deep areas of math and theory and so on, the beauty is in the 
simplicity. So the aesthetics are in how simply can we make things and 
still get to where we want to be? All through the course what you will 
be seeing happening again and again and again is when things begin 
to get too grovelly in terms of math, we will step back and say oops, 
we are engineers, remember? Let's find a much simpler way to do it 
and use intuition. 
 
So time and time and time again, I am going to take you on a simpler 
path where you can solve things by inspection by pure intuition. Most 
circuit designers do that. So take a look at this. I don't like this nasty 
differentiation here. 
 
That's getting into late high school calculus and so on. Let's avoid the 
math and let's see if you find some way of doing it that is even much 
more simpler. And that is what I will do next and show you what is 
called the small signal circuit view. 
 
A purely circuit way of developing the small signal model. So let me 
just start by drawing the large signal equivalent circuit for you. I will 
draw it here for reasons that will be obvious at the end of the class. 
 
All right. This is the large signal equivalent circuit model for our 
MOSFET amplifier. VS and here is my current source. iDS relates to 



the square of VI minus VT. So stare at that for a second. And that is a 
nonlinear circuit. 
 
iDS relates to the square of VI minus VT. Let me start by making the 
following claim. Let me shoot from the hip here and make the 
following grand claim, and then I will show you how I can prove that 
claim. 
 
The grand claim I am about to make says the following. A bunch of 
little devices here. It is a nonlinear circuit. Just suppose for a moment 
we do a Gedanken experiment. Suppose I replace each of my circuit 
elements here with its linearized element equivalent. 
 
In other words, here is a VS source, here is a dependent current 
source, let me replace them with their linear equivalent circuit models. 
In other words, with their corresponding small signal element models. 
 
And I will show you what those are in a second. The resistor has a 
corresponding small signal element. The dependent current source has 
a corresponding small signal behavioral element model. And what I am 
going to do is keep the same circuit connections and simply pull out 
the large signal model for the element and replace it with a small 
signal element model. 
 
And by the nature of the small signal model they are all going to be 
linear. So what I am going to be left with is a linear circuit with simple 
linear circuit elements in there. And then once I have a linear circuit, I 
should be able to analyze that linear circuit using methods 1, 2 and 3, 
superposition, Thevenin, node method and so on. 
 
And certainly the intuitive methods like superposition and Thevenin, 
which make life a lot easier for me with linear models, and thereby get 
the function that I am looking for very quickly. Again, my claim is that 
I can replace each of these large signal models by just small signal 
equivalents and then just analyze the resultant circuit. 
 
And I claim that I should be able to get the same answer. That's a 
claim. All right? So what I will do is give you an informal proof for why 
I can do that. And I also ask you to refer to Section 8.2.1 of the course 
notes to go through the foundations of the small circuit model in more 
detail. 
 



The intuition is that, remember KVL and KCL? I can write down KVL 
and KCL for every loop in that circuit and every node in that circuit. If I 
do KVL and KCL, I will end up with something like this. 
 
For the input loop I get VI something or the other applying KVL. For 
the output loop I get V out something or the other. And then applying 
KCL I get some other equation in iDS. So here are my KVL and KCL 
equations for that circuit. 
 
Now, KVL and KCL are simply a different representation of the circuit 
because within those KVL and KCL is encoded the topology of the 
circuit. Remember each KVL equation represents a loop and each KCL 
equation represents how nodes are connected together. 
 
So KVL and KCL equations encode within them the topology of my 
circuit. What I do next is, say, I replace each of these with the bias 
plus the small signal, so I get the bias plus the small signal and keep 
the equations the same. 
 
All I have done in my big set of KVL, KCL equations, I have simply 
replaced the total variable with the large signal variable and the small 
signal quantity. Then comes a key trick. The key trick is that because 
the bias point variables, they are a valid solution to the circuit. 
 
The circuit is in this quiescent state, and those are valid solutions to 
circuit. So therefore I can cancel them out. So the VI, the large signal 
values can be cancelled out leaving just small signal variables in there. 
 
So from the KVL, KCL equations I can cancel out the large signal 
values, the DC bias points because they satisfy the KVL and KCL 
themselves. In other words, I could have written VI plus V out and so 
on. 
 
Since they are satisfied I just strike out the large signal variable from 
both sides of each of these equations, so what is left is the same KVL, 
KCL equations but with small variables in place of the big variables. 
 
What that should tell you, this informal proof should tell you is that the 
small signal variables should then satisfy the same form of the KVL, 
KCL equations that the total variables satisfy. And because the KVL, 
KCL equations are a reflection of the topology of the circuit, what that 
says is that the small signal variables must also satisfy KVL and KCL. 
 



And since these arrive from the small signal elements that says that I 
can replace the big elements with the small elements and KVL and KCL 
will hold for the resulting circuit. This is a very quick breeze through, 
an informal proof to show that I can replace the big elements with the 
corresponding little element models and then simply apply linear 
techniques. 
 
Refer to Section 8.2.1 for more foundations and more discussion about 
the foundations for why we can do this. That brings up the small signal 
circuit method. The circuit method for small signal analysis has three 
steps. 
 
The first step is find operating point by using LS. First you analyze 
your large signal circuit and find the operating point. You have to do 
this, because remember, the small signal models depend on the 
operating point values. 
 
Remember the gain of our amplifier depended on the bias point. 
Second step is develop small signal models of elements. Second step 
is take each of the elements in your circuit and find their equivalent 
small circuit model for each of the elements. 
 
Third step is replace original elements with their small signal model 
elements. Third step is simply take the large elements and replace 
them with their small signal equivalent models. Then analyze resulting 
circuit, and that circuit will be a linear circuit. 
 
So let's do an example. I will just use the amplifier as an example of 
this method. And convince you that you are going to get the same 
expression at the end, but just so, so simply without even the smallest 
amount of grubby math. 
 
Three steps. The first step is to find the operating point using the large 
signal model. And let me just do that here. I get my V out = VS-
K/2(VI-VT)^2 RL. Let me just write down that out here. Don't worry 
about copying that down. 
 
It is on the last page of your notes. The first step of the method simply 
applies the large signal model and finds out the behavior of that circuit 
to find out what the bias point values are. The second step is to 
develop the small signal model of my elements. 
 



How do I go about developing the small signal models of elements? 
Let's start with the MOSFET. The large signal model for the MOSFET 
looks like this. Here is my Vgs. This is my gate. This is my drain. 
 
This is my source. And I know my iDS to be K/2(Vgs-VT)^2. So this is 
the large signal model for the MOSFET, again in saturation. I am 
talking about all of these models are under the saturation discipline. 
 
So Vgs relates to iDS in the following way for the MOSFET. That is iDS, 
is K/2 and that is my square law relationship. So what is a 
corresponding small signal model? I go ahead and start with this. 
 
The corresponding small signal model simply says that iDS relates to 
Vgs in the following way. All I have to do is find a small signal 
equivalent where I need to find out, given a small change in the input 
Vgs, what is the small change in the iDS? So I can apply my standard 
trick to a much simpler expression here, which is iDS simply, I 
differentiate this function with respect to Vgs. 
 
So I don't completely eliminate the math here, but it is a much simpler 
problem here. At Vgs equals the bias point times small vgs. I can find 
the small change in iDS corresponding to a small change in the input 
using this expression. 
 
That gives me iDS as simply K(Vgs-VT) vgs. I call this gm, and I will 
tell you why in a second. So what does this expression say? This 
expression says that if I have a small change in Vgs then this will be 
my small change in iDS. 
 
Notice that the resulting small signal model is also a dependent 
current source. It is a voltage controlled dependent current source. So 
the output is the current, and it is a dependent current source and it 
depends on the input voltage. 
 
The good news is that notice that this one, this expression here gm is 
a constant related to the bias point values. Therefore, notice that the 
small signal model for the MOSFET in saturation, not surprisingly, is a 
linear voltage controlled current source according to the following 
expression. 
 
So iDS=gm Vgs. Gm is a representation for K(Vgs-VT) and is called a 
transconductance. It is called a transconductance because it, in some 
sense, deflects the conductance properties of this based on the input. 
 



So it is a transconductance. So this value is called Vgs. Therefore, I 
can build the small signal model as follows. Vgs is a voltage controlled 
current source and iDS is simply gm Vgs. So this is my gate, drain, 
source. 
 
So that is the small signal model for my MOSFET. As a next step what 
are the other elements in my circuit? Let's see. I have a voltage source 
and I have a resistor, so let me find out the corresponding small signal 
model for a DC supply VS. 
 
This is Page 7. I will do it mathematically for you, but often times it is 
always good to do a sanity check using intuition. Let me ask you, the 
large signal for a DC supply looks like this. The element law for a 
voltage source is VS equals some capital VS. 
 
It is a constant voltage. So what do you expect to be the small signal 
model for a voltage source? In other words, for a small change, 
suppose I have a small change in the current, by how much should the 
output VS change? It shouldn't change. 
 
It is a voltage source. So what does intuition tell you is a small signal 
model for the voltage source? A short. So the key here is that a 
voltage source behaves like a short circuit for small perturbations. 
 
In other words, if I change the current flowing through it by a small 
amount somehow, the output is still going to held at VS. In other 
words, small signals are simply going to scoot through this voltage 
source without having any impact whatsoever on the voltage. 
 
Or mathematically I could also do small vs is del by del IS of VS 
evaluated at IS equals some capital IS times small IS. And therefore 
VS equals zero. What that means is that the small signal model for my 
voltage source is simply a short circuit. 
 
So in a small circuit voltage sources appear like a short circuit. Finally, 
I have a resistor, my resistor R. Let me find out its corresponding 
small signal model. The large signal model looks like this R, VR, IR. 
 
And I know that VR is simply RIR. And to find the small signal 
equivalent I do del of IRR divided by del IR for IR calculated at some 
constant value times small IR. What I am looking to do is to find out 
what is the change in the voltage across R for a small perturbation in 
the current? Again, let me exhort you to rely on intuition to at least 
sanity check your answers. 



 
So what do you think this should look like? It's a resistor and I have a 
small change in the current, by what do you expect the voltage to 
change? Think about, for the next five seconds, what the small signal 
model for this should look like and then I will go ahead and write down 
the answer. 
 
So differentiating I simply get RIR. In other words, for a resistor the 
small signal model is the resistor itself. So what I have done so far, let 
me just take you through where we are right now, give you the big 
picture there. 
 
I began by suggesting that looking to find an even simpler way to do 
small signal analysis. I gave you an informal proof to show that if I 
had small signal element models for all of my elements, I could simply 
replace them in the circuit and then do a corresponding linear circuit 
analysis phase to get the result I am looking for. 
 
There are three steps to the method. As a first step we began by 
finding small signal models for each of our elements. For the nonlinear 
MOSFET the small signal model was a linear dependent current source. 
 
For a voltage source the corresponding small signal model was a short 
circuit. Again, that makes sense intuitively if I change the current 
through a voltage source by a small amount. By how much does the 
voltage change? It is a voltage source, silly. 
 
The voltage doesn't change. So the small signal V, the small change in 
the voltage is zero, and that is the same thing as a short circuit. For a 
resistor by how much does the voltage change if I change the current 
by a small amount? Well, it will change by R times the current change, 
and that is the property of a resistor, R. 
 
As a final step what I would like to do, on Page 8, I'd like to very 
quickly draw for you the small signal circuit and then analyze it. This is 
the large signal circuit. That is a large signal circuit. 
 
And let me draw the small signal circuit. And the method says simply 
pluck out, gouge out each of these elements. And simply replace each 
of these nasty nonlinear elements with the corresponding small signal 
linear equivalents. 
 



So let's do that. Remember, for the input you replace input with its 
small signal voltage because I am telling you that it's sourcing a small 
change in VI. So that is VI. And then I replace a short for VS. 
 
I replace an R for RL because it is an RL itself for the small signal 
model. And then for the dependent source, we discovered that the 
dependent source was a linear dependent source given where 
ids=gmvi. 
 
Remember, this was my small VO. Here you go. I have a small signal 
circuit here where I have simply created that by replacing each of the 
big elements by little rinky-dink elements. Now these are all linear 
elements so I can do a really simple linear analysis. 
 
What method shall we use? Well, this is so simple. I will just go ahead 
and use the node method. So applying the node method at the node 
with voltage VO, what I will do is the current going up, VO divided by 
RL equals the current going down iDS. 
 
And so the current going up is VO divided by RL and the current going 
down is -- Oops, I should have done this. The total current going out is 
zero, so the sum of these two is zero. That is my good old node 
method here. 
 
And I know that iDS is simply gmvi equals zero. So right there I have 
the relationship between VO and VI. So VO is simply minus gmviRL. 
And remember gm was simply K VI minus VT. We are done, OK? What 
have we here? I created a linear circuit which simply comprised small 
signal models for each of my big elements. 
 
And then I simply did a straightforward linear analysis using any one 
of the linear techniques I knew about. This is simple enough so I apply 
the node method. And I've got the equation at this node, simplified it 
and I directly got the answer. 
 
In one or two steps I directly gave you the output as a function of the 
input. It can't get any simpler. Thank you. 


