6.003: Signals and Systems

Feedback and Control

October 13, 2011



Courtesy of Jason Dorfman MIT / CSAIL. Used with permission.



Example: Perching

Can we make a fixed-wing UAV land on a perch like a bird?




The “Perching” Problem

Courtesy of Leon van Dommelen and Szu-Chuan Wang. Used with permission.

Photo of a cardinal landing on a branch removed due to copyright restrictions.

Photo from Naval Historical Center Aircraft Data Series.



http://www.history.navy.mil/planes/f14.htm

Dimensionless Analysis

® Bird or plane...
® with mass m, wing area S, operating in a fluid with density p

® which requires a distance x to slow from Vp to Vr

® Distance-averaged drag coefficient, Cp.

Photo of the Boeing 747-400ER removed due to copyright restrictions.

® A few (very preliminary) reference points:

Vehicle Average Cp
Boeing 747 0.16
X-31 0.3
Cornell Perching Plane 0.25
Common Pigeon |0

Photos of Cornell perching plane and landing pigeon removed due to copyright restrictions.

U.S. Navy photo by James Darcy.


http://www.boeing.com/companyoffices/gallery/images/commercial/747400er-04.html

Image removed due to copyright restrictions. Please see SlowMoHighSpeed. "Photron SA2 Camera - Eagle Owl in Flight."
October 27, 2008. YouTube. Accessed September 25, 2012. http://www.youtube.com/watch?v=LA6XSrM0OV_0



http://www.youtube.com/watch?v=LA6XSrM0V_0

Experiment Design

® Glider (no propellor)
® Flat plate wings
® Dihedral (passive roll stability)

e Offboard sensing and control




System lIdentification

® Nonlinear rigid-body vehicle model
® Linear actuator model (+ saturations, delay)

® Real flight data (no wind tunnel)



System lIdentification
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A Dynamic Model

® Planar dynamics

® Aerodynamics fit from data

® State: X = [x,y,9,¢,ib,y,9]

® Actuator: u = ¢




Perching Results

® Enters motion capture @ 6m/s

® Perch in < 3.5m away Requires separation!

® Entire trajectory < Is



Flow visualization

Courtesy of Jason Dorfman MIT / CSAIL. Used with permission.



Dimensionless Analysis

Vehicle Average Cp
Boeing 747 0.16
X-31 0.3
Cornell Perching Plane 0.25
Common Pigeon 10
Our glider ||
Cobra maneuver (Mig) 0.9




Feedback is essential...

® to compensate for initial condition errors, disturbances, and imperfect
model

® agile airplanes are open loop unstable

open loop feedback



Today’s goal

Use systems theory to gain insight into how to control a system.



Example: wallFinder System

Approach a wall, stopping a desired distance d; in front of it.

-0l

——» d; = desiredFront
» d, = distanceFront

do

K=-0.5

What causes these different types of responses?
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Structure of a Control Problem

(Simple) Control systems have three parts.

X—»@E—b . C >y

controller plant

S

Sensor

The plant is the system to be controlled.

The sensor measures the output of the plant.

The controller specifies a command C to the plant based on the
difference between the input X and sensor output S.



Analysis of wallFinder System

Cast wallFinder problem into control structure.

X—»@E—> ¢ 5 Y

controller plant

v

S

A

sensor

——» d; = desiredFront
» d, = distanceFront

proportional controller: wv[n] = Ke[n] = K (d;[n] — ds[n])
locomotion: d,[n] =

d
sensor with no delay: ds[n] = dy[n]



Analysis of wallFinder System: Block Diagram

Visualize as block diagram.

-0l

T
—» d; = desiredFront

» d, = distanceFront

proportional controller: wv[n] = Ke[n] = K (d;[n] — ds[n])
locomotion: dy[n] = do[n — 1] — Tv[n — 1]

sensor with no delay: ds[n] = do[n]

D; —>@—>|>—>|>—>@—> R > D,




Analysis of wallFinder System: System Function

Solve.
= |
—» d; = desiredFront
» d, = distanceFront
v
D; —»@—»|>—>|>—>@—» R > D,
T — '
—KTR
D, 1-» _ -KIR  -KTR
D; ~-KTR 1-R-KTR 1-(1+KT)R

1+

1-R
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Analysis of wallFinder System: Poles

The system function contains a single pole at z =1+ KT.
D, —KTR

D, 1-(1+KT)R
Unit-sample response for KT = —0.2:

hln]
(L?_i????Oooon
0

Unit-step response s[n] for KT = —0.2:

n

Ll

What determines the speed of the response? Could it be faster?
21



Check Yourself

Find KT for fastest convergence of unit-sample response. }

= U e =

D, ~KTR
D, 1-(1+KT)R
KT = —2

KT =—1

KT =0

KT =1

KT =2

none of the above
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Check Yourself

Find KT for fastest convergence of unit-sample response.

D, —KTR

D, 1-(1+KT)R

If KT = —1 then the pole is at 2z =0.

D,  -KTR
D; 1-(1+KT)R

=R

Unit-sample response has a single non-zero output sample, at n = 1.

23



Analysis of wallFinder System: Poles

The poles of the system function provide insight for choosing K.

D, —KTR (1—-po)R
— = = : =1+ KT
D, 1-(+KT)R  1-pRr = P77
Im z Im 2 Im 2
\Jl R,GZ \Jl R,GZ \Jl Rez
0<py<1 —1<py<O po < —1
-1< KT <0 —2< KT < -1 KT < -2
monotonic alternating alternating

converging converging diverging

24



Check Yourself

Find KT for fastest convergence of unit-sample response. }

S S

D, ~KTR
D, 1-(1+KT)R
KT = —2

KT =—1

KT =0

KT =1

KT =2

none of the above

25




Analysis of wallFinder System

The optimum gain K moves robot to desired position in one step.

-l

T
——— ¥ d; = desiredFront=1m

» d, = distanceFront=2m

=,
=)
I

K (di[n] — do[n]) = —10(1 —2) =10 m/s

exactly the right speed to get there in one step!
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Analyzing wallFinder: Space-Time Diagram

The optimum gain K moves robot to desired position in one step.

-0l

T
——» d; = desiredFront

» d, = distanceFront

» position
O v =10

time

27



Analyzing wallFinder: Space-Time Diagram

The optimum gain K moves robot to desired position in one step.

-0l

T
——» d; = desiredFront

» d, = distanceFront

» position
O v =10
(@) v=20

time
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Analyzing wallFinder: Space-Time Diagram

The optimum gain K moves robot to desired position in one step.

-0l

T
——» d; = desiredFront

» d, = distanceFront

» position
O v =10
O v=20
O v=20
O v=20
O v=20
O v=20
O v=20

time
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Analysis of wallFinder System: Adding Sensor Delay

Adding delay tends to destabilize control systems.

-0l

T
—» d; = desiredFront

» d, = distanceFront

proportional controller: wv[n] = Ke[n] = K (d;[n] — ds[n])
locomotion: dy[n] = do[n — 1] — Tv[n — 1]

sensor with delay: ds[n] = do[n — 1]
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Analysis of wallFinder System: Adding Sensor Delay

Adding delay tends to destabilize control systems.

-0l

T
——» d; = desiredFront

» d, = distanceFront

» position

(@) v =10

time
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Analysis of wallFinder System: Adding Sensor Delay

Adding delay tends to destabilize control systems.

-0l

T
——» d; = desiredFront

» d, = distanceFront

» position
O
@] v =10
@] v

time
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Analysis of wallFinder System: Adding Sensor Delay

Adding delay tends to destabilize control systems.

-0l

T
——» d; = desiredFront
» d, = distanceFront

» position
O
@] v =10
@] v=>0
(@) v=-—10

time
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Analysis of wallFinder System: Adding Sensor Delay

Adding delay tends to destabilize control systems.

-0l

T
——» d; = desiredFront
» d, = distanceFront

» position
O
@] v =10
@] v=>0
(@) v=-—10
(@) v=-—10

time
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Analysis of wallFinder System: Adding Sensor Delay

Adding delay tends to destabilize control systems.

-0l

T
——» d; = desiredFront

» d, = distanceFront

» position
O
@] v =10
@] v=>0
(@) v=-—10
(@) v=-—10
(@) v=20

time
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Analysis of wallFinder System: Block Diagram

Incorporating sensor delay in block diagram.

-0l

T
—» d; = desiredFront

» d, = distanceFront

proportional controller: wv[n] = Ke[n] = K (d;[n] — ds[n])
locomotion: dy[n] = do[n — 1] —Tv[n —1]

sensor with delay: ds[n] = do[n

D; —»@—»|>—>|>—»@—» R |1 Do

36



russt
Text Box
sensor with delay:


Check Yourself

-

[

D
Find the system function H = FO

i

D; —>QTF)—>|>Z>|>R—:CP—> R > D,

1 KTR —KTR
T1-R "1+ R - KTR?
KTR —KTR
3. 71_R—KT72 4. 11— R KTR?

5. none of the above
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Check Yourself

D,
Find the system function H = —. .

n *@*bﬂbﬂ@» R

Replace accumulator with equivalent block diagram.

D; —>@—>|>—>|>—>
! Rl
~KTR
D, 1-R _ -KTR
D; - ~KTR? 1—-R-KTR?

1-R

38

» D,



Check Yourself

-

[

D
Find the system function H = FO

i

D; —>€Tr)—>|>l/>|>7z—:§r)—> R > D,

, ETR ~KTR
"1-R " 1+ R - KTR?
KTR ~KTR

. 4.
3. o ~KIR 1-R— KTR?

5. none of the above
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Analyzing wallFinder: Poles

1
Substitute R — — in the system functional to find the poles.
z

D, ~KTR ~KTY KT

Di 1-R-KIR? 1-1_fgrL =~ 22— KT
4

The poles are then the roots of the denominator.

2
1 1
= -+ — KT
z 5 <2> +

40



Feedback and Control: Poles

If KT is small, the poles are at 2z~ —-KT and z~ 1+ KT.

z=4+ %Q—FKTm%iW:l—i—KT,—KT

Im z
KT ~0 z-plane

,

X

Rez

~

Pole near O generates fast response.
Pole near 1 generates slow response.

Slow mode (pole near 1) dominates the response.
41



Feedback and Control: Poles

As KT becomes more negative, the poles move toward each other

and collide at z = 1 when KT = —1.
1 1)2 1 12 111
p=g51\(3) +KT=5%+\/(3) —1=133
Im z
1 z-plane

KT =—-
4

Rez

Persistent responses decay. The system is stable.

42



Feedback and Control: Poles

If KT < —1/4, the poles are complex.

e=da (D) KT =145/ -KT —(})°

Im 2z
KT =-1 A z-plane

Y

—— Rez

Complex poles — oscillations.
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Same oscillation we saw earlier!

Adding delay tends to destabilize control systems.

-0l

T
——» d; = desiredFront
» d, = distanceFront

» position
O
@] v =10
@] v=>0
(@) v=-—10
(@) v=-—10
(@) v=20
O

time

44



Check Yourself

Im 2
KT =-1 A Z-plane
Y
> I Rez
)
v

( What is the period of the oscillation?

1.1 2.2 3.3
5 6 0. none of above
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Check Yourself

Imz
KT = -1 A Z-plane
>
>_
T Rez
)
v
1, V3 L
= -4 Y2 Em/3

Po 5 J 9 €
pg — etim/3
cEIOT/3  Ajn[3  j2m/3  jdn/3  EjAn/3  EjBw/3  Ej6m/3
~—— ~—

1 etTj2m—1
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Check Yourself

Im 2
KT =-1 A Z-plane
Y
>— 1 Rez
)
v

[ What is the period of the oscillation?

1.1 2.2 3.3
5 6 0. none of above
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Feedback and Control: Poles

The closed loop poles depend on the gain.

Im z
z-plane

—
a

—{— Rez

If KT:0— —oco: then z1,29:0,1— 3,5 = 1+ 500

48



Check Yourself

s

[ Find KT for fastest response.

Im z
Z-plane
— closed-loop poles
a
2
1 1
Rez — &+ — KT
i 2 +(2) +
Y
|
1. 0 2. -1 3. -1

4. —1 5 - 0. none of above

49



Check Yourself

2
1 1
= -4 — KT
z 5 <2) +

The dominant pole always has a magnitude that is >

1
It is smallest when there is a double pole at z = 3

1
Therefore, KT = I

50
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Check Yourself

s

[ Find KT for fastest response.

Im z
Z-plane
— closed-loop poles
a
2
1 1
Rez — &+ — KT
i 2 +(2) +
Y
|
1. 0 2. -1 3. -1

4. —1 5 - 0. none of above
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Destabilizing Effect of Delay

Adding delay in the feedback loop makes it more difficult to stabilize.

Ideal sensor: dg[n| = dy[n]
More realistic sensor (with delay): ds[n] = do[n — 1]

Imz Im 2z
A

—

Rez Rez

A

._/
v

Fastest response without delay: single pole at z = 0.

1
Fastest response with delay: double pole at z = much slower!

5 .
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Destabilizing Effect of Delay

Adding more delay in the feedback loop is even worse.
More realistic sensor (with delay): ds[n] = do[n — 1]

Even more delay: ds[n] = do[n — 2]

Im 2z Im 2z
A
[
2
Rez Rez
[
 /
. 1
Fastest response with delay: double pole at z = 3

Fastest response with more delay: double pole at z = 0.682.

— even slower
53



Feedback and Control: Summary

Feedback is an elegant way to design a control system.

Stability of a feedback system is determined by its dominant pole.

Delays tend to decrease the stability of a feedback system.
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Photo from Naval Historical Center Aircraft Data Series.
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http://www.history.navy.mil/planes/f14.htm

Block diagram of the F-14 control system as modeled in Simulink® removed due to copyright restrictions. Please see "F-14 Longitudinal Flight Control." The MathWorks, Inc.
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http://www.mathworks.com/help/simulink/examples/f-14-longitudinal-flight-control.html
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