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Courtesy of Jason Dorfman MIT / CSAIL. Used with permission.



 

     

Example: Perching
 

Can we make a fixed-wing UAV land on a perch like a bird? 
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 The “Perching” Problem
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Courtesy of Leon van Dommelen and Szu-Chuan Wang. Used with permission.

Photo from Naval Historical Center Aircraft Data Series.

Photo of a cardinal landing on a branch removed due to copyright restrictions. 

http://www.history.navy.mil/planes/f14.htm


Dimensionless Analysis
 

• Bird or plane... 

• with mass m, wing area S, operating in a fluid with density ρ 

• which requires a distance x to slow from V0 to Vf 

• Distance-averaged drag coefficient, CD: 

2m 
� 

V0 
� 

�CD� = ln 
ρSx Vf 

• A few (very preliminary) reference points: 

Vehicle Average CD 

Boeing 747 0.16 

X-31 0.3 

Cornell Perching Plane 0.25 

Common Pigeon 10 
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Photo of the Boeing 747-400ER removed due to copyright restrictions.

U.S. Navy photo by James Darcy.
Photos of Cornell perching plane and landing pigeon removed due to copyright restrictions.

http://www.boeing.com/companyoffices/gallery/images/commercial/747400er-04.html
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Image removed due to copyright restrictions. Please see SlowMoHighSpeed. "Photron SA2 Camera - Eagle Owl in Flight."
October 27, 2008. YouTube. Accessed September 25, 2012. http://www.youtube.com/watch?v=LA6XSrM0V_0

http://www.youtube.com/watch?v=LA6XSrM0V_0


 

 

  

   

Experiment Design
 

• Glider (no propellor) 

• Flat plate wings 

• Dihedral (passive roll stability)
 

• Offboard sensing and control
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System Identification
 

• Nonlinear rigid-body vehicle model 

• Linear actuator model (+ saturations, delay)
 

• Real flight data (no wind tunnel) 
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System Identification
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A Dynamic Model
 

(x, z)
m, I 
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• Planar dynamics 

• Aerodynamics fit from data 

• State: x = [x, y, θ, φ, x,˙ y,˙ θ̇]
 

• Actuator: u = φ̇
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Perching Results
 

• Enters motion capture @ 6m/s 

• Perch in < 3.5m away Requires separation!
 

• Entire trajectory < 1s 
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Flow visualization
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Courtesy of Jason Dorfman MIT / CSAIL. Used with permission.



 

 

  

 

Dimensionless Analysis
 

Vehicle Average CD 

Boeing 747 0.16 

X-31 0.3 

Cornell Perching Plane 0.25 

Common Pigeon 10 

Our glider 1.1 

Cobra maneuver (Mig) 0.9 
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Feedback is essential...
 

•	 to compensate for initial condition errors, disturbances, and imperfect 
model 

•	 agile airplanes are open loop unstable 

open loop	 feedback
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Today’s goal
 

Use systems theory to gain insight into how to control a system.
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Example: wallFinder System
 

Approach a wall, stopping a desired distance di in front of it. 

di = desiredFront
do = distanceFront

t

do

K = −0.5 t

do

K = −1

t

do

K = −2 t

do

K = −8

What causes these different types of responses?
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Structure of a Control Problem
 

(Simple) Control systems have three parts.
 

The plant is the system to be controlled.
 

The sensor measures the output of the plant.
 

The controller specifies a command C to the plant based on the
 

difference between the input X and sensor output S.
 

+
−

X Y
E

S

C

controller plant

sensor
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Analysis of wallFinder System 

Cast wallFinder problem into control structure. 

+
−

X Y
E

S

C

controller plant

sensor

di = desiredFront
do = distanceFront

proportional controller: v[n] = Ke[n] = K
 
di[n] − ds[n]

 
locomotion: do[n] = do[n − 1] − Tv[n − 1] 

sensor with no delay: ds[n] = do[n] 
18



  

Analysis of wallFinder System: Block Diagram
 

Visualize as block diagram. 

di = desiredFront
do = distanceFront

proportional controller: v[n] = Ke[n] = K di[n] − ds[n]
 

locomotion: do[n] = do[n − 1] − Tv[n − 1]
 

sensor with no delay: ds[n] = do[n] 

+ K −T + RDi Do
−

V
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Analysis of wallFinder System: System Function
 

Solve. 

di = desiredFront
do = distanceFront

+ K −T + RDi Do
−

V

−KT R 
Do 1 − R −KT R −KT R = = = 
Di 1 − R − KT R 1 − (1 + KT )R1 + 

−KT R 
1 − R 
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Analysis of wallFinder System: Poles
 

The system function contains a single pole at z = 1 + KT . 
Do −KT R = 
Di 1 − (1 + KT )R 

Unit-sample response for KT = −0.2: 

0
n

h[n]

0.2

Unit-step response s[n] for KT = −0.2: 

1

0
n

What determines the speed of the response? Could it be faster? 
21



Check Yourself
 

Find KT for fastest convergence of unit-sample response. 

Do 

Di 
= 

−KT R 
1 − (1 + KT )R 

1. KT = −2 

2. KT = −1 

3. KT = 0 

4. KT = 1 

5. KT = 2 

0. none of the above 
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Check Yourself
 

Find KT for fastest convergence of unit-sample response. 

Do −KT R = 
Di 1 − (1 + KT )R 

If KT = −1 then the pole is at z = 0. 

Do −KT R = = R 
Di 1 − (1 + KT )R 

Unit-sample response has a single non-zero output sample, at n = 1. 
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Analysis of wallFinder System: Poles
 

The poles of the system function provide insight for choosing K. 

Do −KT R (1 − po)R 
Di 

= 1 − (1 + KT )R 
= 1 − poR 

; p0 = 1 + KT 

1 Re z

Im z

0 < p0 < 1
−1 < KT < 0
monotonic
converging

1 Re z

Im z

−1 < p0 < 0
−2 < KT < −1

alternating

converging

1 Re z

Im z

p0 < −1
KT < −2

alternating

diverging
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Check Yourself
 

Find KT for fastest convergence of unit-sample response. 

Do 

Di 
= 

−KT R 
1 − (1 + KT )R 

1. KT = −2 

2. KT = −1 

3. KT = 0 

4. KT = 1 

5. KT = 2 

0. none of the above 
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Analysis of wallFinder System
 

The optimum gain K moves robot to desired position in one step. 

di = desiredFront=1 m

do = distanceFront=2 m

KT = −1
 
1 1
 

K = − = − = −10 
T 1/10 

v[n] = K di[n] − do[n] = −10 1 − 2 = 10 m/s 

exactly the right speed to get there in one step! 
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Analyzing wallFinder: Space-Time Diagram
 

The optimum gain K moves robot to desired position in one step.
 

di = desiredFront
do = distanceFront

position

time

v = 10
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Analyzing wallFinder: Space-Time Diagram
 

The optimum gain K moves robot to desired position in one step.
 

di = desiredFront
do = distanceFront

position

time

v = 10
v = 0
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Analyzing wallFinder: Space-Time Diagram
 

The optimum gain K moves robot to desired position in one step.
 

di = desiredFront
do = distanceFront

position

time

v = 10
v = 0
v = 0
v = 0
v = 0
v = 0
v = 0
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Analysis of wallFinder System: Adding Sensor Delay
 

Adding delay tends to destabilize control systems. 

di = desiredFront
do = distanceFront

proportional controller: v[n] = Ke[n] = K di[n] − ds[n]
 

locomotion: do[n] = do[n − 1] − Tv[n − 1]
 

sensor with delay: ds[n] = do[n − 1]
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Analysis of wallFinder System: Adding Sensor Delay
 

Adding delay tends to destabilize control systems. 

di = desiredFront
do = distanceFront

position

time

v = 10
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Analysis of wallFinder System: Adding Sensor Delay
 

Adding delay tends to destabilize control systems. 

di = desiredFront
do = distanceFront

position

time

v = 10
v = 0
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Analysis of wallFinder System: Adding Sensor Delay
 

Adding delay tends to destabilize control systems. 

di = desiredFront
do = distanceFront

position

time

v = 10
v = 0
v = −10
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Analysis of wallFinder System: Adding Sensor Delay
 

Adding delay tends to destabilize control systems. 

di = desiredFront
do = distanceFront

position

time

v = 10
v = 0
v = −10
v = −10
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Analysis of wallFinder System: Adding Sensor Delay
 

Adding delay tends to destabilize control systems. 

di = desiredFront
do = distanceFront

position

time

v = 10
v = 0
v = −10
v = −10
v = 0
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Analysis of wallFinder System: Block Diagram
 

Incorporating sensor delay in block diagram. 

di = desiredFront
do = distanceFront

proportional controller: v[n] = Ke[n] = K di[n] − ds[n]
 

locomotion: do[n] = do[n − 1] − Tv[n − 1]
 

sensor with no delay: ds[n] = do[n − 1] 

+ K −T + R

R

Di Do
−

V
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Check Yourself
 

Find the system function H = 
Do 

Di 
. 

+ K −T + R

R

Di Do
−

V

1. 
KT R 
1 − R 

2. 
−KT R 

1 + R − KT R2 

3. 
KT R 
1 − R 

− KT R 4. 
−KT R 

1 − R − KT R2 

5. none of the above 
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Check Yourself
 

Do 

Do 

Di 1 − R − KT R2 
1 + 

−KT R2 

Find the system function H = 
Di 

. 

+ K −T + R

R

Di Do
−

V

Replace accumulator with equivalent block diagram. 

+ K −T R
1−R

R

Di Do
−

= 

−KT R 
1 − R = 

−KT R 

1 − R 
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Check Yourself
 

Find the system function H = 
Do 

Di 
. 

+ K −T + R

R

Di Do
−

V

1. 
KT R 
1 − R 

2. 
−KT R 

1 + R − KT R2 

3. 
KT R 
1 − R 

− KT R 4. 
−KT R 

1 − R − KT R2 

5. none of the above 
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Analyzing wallFinder: Poles
 

1 
Substitute R → in the system functional to find the poles. 

z
 

Do −KT R −KT 1 −KTz
 z= = = 
Di 1 − R − KT R2 1 − 1 

z − KT 1 
2 z2 − z − KT 

z

The poles are then the roots of the denominator. a  21 1 
z = + KT 2 

± 2
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Feedback and Control: Poles
 

If KT is small, the poles are at z ≈ −KT and z ≈ 1 + KT .
 

2+ KT ≈ 1
2 ± + KT 

2 = 1 + KT, −KT 1
2

1 Re z

Im z
z-planeKT ≈ 0

Pole near 0 generates fast response. 

z =
 1
2 ±
 1

2 

Pole near 1 generates slow response.
 

Slow mode (pole near 1) dominates the response.
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Feedback and Control: Poles
 

As KT becomes more negative, the poles move toward each other
 

and collide at z =
 when KT = −
 .
 1
2

1
4

z =
 1
2 ±
 

21
2 + KT = 1

2 ± 1
2 − = , 1

4 
1
2

1
2 

2
1 Re z

Im z
z-plane

KT = −1
4

Persistent responses decay. The system is stable. 

2 
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Feedback and Control: Poles
 

If KT < −1/4, the poles are complex.
 

2
+ KT = 1
2 ± j −KT − 1

2 

1 Re z

Im z
z-planeKT = −1

Complex poles → oscillations. 

z =
 1
2
 ±
 1

2
 
2
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Same oscillation we saw earlier!
 

Adding delay tends to destabilize control systems. 

di = desiredFront
do = distanceFront

position

time

v = 10
v = 0
v = −10
v = −10
v = 0
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Check Yourself
 

1 Re z

Im z
z-planeKT = −1

What is the period of the oscillation? 

1. 1 2. 2 3. 3 

4. 4 5. 6 0. none of above 

45



Check Yourself 

1 Re z

Im z
z-planeKT = −1

√
1 3 ±jπ/3 p0 = 2 

± j = e2 
n ±jπn/3 p = e0 

±j0π/3 ±jπ/3 ±j2π/3 ±j3π/3 ±j4π/3 ±j5π/3 ±j6π/3 e , e , e , e , e , e , ee -v " e -v " 
1 e±j2π=1 
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Check Yourself
 

1 Re z

Im z
z-planeKT = −1

What is the period of the oscillation? 

1. 1 2. 2 3. 3 

4. 4 5. 6 0. none of above 
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Feedback and Control: Poles
 

If KT : 0 → −∞: 

The closed loop poles depend on the gain. 

1 Re z

Im z
z-plane

then z1, z2 : 0, 1 → 1 
2 , 2 → 1 

2 ± j∞1 
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Check Yourself
 

Find KT for fastest response. 

1 Re z

Im z
z-plane

closed-loop poles

1
2 ±

√(
1
2

)2
+KT

1. 0 2. −1
4 3. −1

2 
4. −1 5. −∞ 0. none of above 
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  Check Yourself
 a
 
2
1
1
 + KT
 z =
 ±
2
 2
 

The dominant pole always has a magnitude that is ≥
 .
 

1
 
2

.
It is smallest when there is a double pole at z =
 

Therefore, KT = −
 
1
 
4

.
 

1
 
2
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Check Yourself
 

Find KT for fastest response. 

1 Re z

Im z
z-plane

closed-loop poles

1
2 ±

√(
1
2

)2
+KT

1. 0 2. −1
4 3. −1

2 
4. −1 5. −∞ 0. none of above 
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Destabilizing Effect of Delay
 

Adding delay in the feedback loop makes it more difficult to stabilize. 

Ideal sensor: ds[n] = do[n] 

More realistic sensor (with delay): ds[n] = do[n − 1] 

1 Re z

Im z

1 Re z

Im z

Fastest response without delay: single pole at z = 0. 
1 

Fastest response with delay: double pole at z = much slower! 2 . 
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Destabilizing Effect of Delay
 

Adding more delay in the feedback loop is even worse. 

More realistic sensor (with delay): ds[n] = do[n − 1] 

Even more delay: ds[n] = do[n − 2] 

1 Re z

Im z

2
1 Re z

Im z

Fastest response with delay: double pole at z = 
1 
2 . 

Fastest response with more delay: double pole at z = 0.682. 

→ even slower 
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Feedback and Control: Summary
 

Feedback is an elegant way to design a control system.
 

Stability of a feedback system is determined by its dominant pole.
 

Delays tend to decrease the stability of a feedback system.
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Photo from Naval Historical Center Aircraft Data Series.

http://www.history.navy.mil/planes/f14.htm
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Block diagram of the F-14 control system as modeled in Simulink® removed due to copyright restrictions. Please see "F-14 Longitudinal Flight Control." The MathWorks, Inc.

http://www.mathworks.com/help/simulink/examples/f-14-longitudinal-flight-control.html
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