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PROFESSOR: Welcome. One quick announcement-- if you have not yet picked up

your graded exams, you can do so by seeing the TAs after the hour.

OK? So today I want to continue to think about what we started last

week, thinking about Fourier series. The idea is to develop a theory

that lets us look at signals on the basis of frequency content, much as

we looked at frequency responses as a characterization of systems,

according to the way they process frequencies.

And we saw last time that there were a number of kinds of signals, for

example, musical signals, where that kind of an on approach-- thinking

about the signal according to the frequencies that are in it-- makes a

lot of sense and can lead to insight. We also developed some

formalism. We figured out how you can break a signal into components

and then assemble the components to generate the signal.

And what I want to mention at the beginning of the hour today is just

how to think about this operation in a more familiar way. We do this

kind of a thing, breaking something into components all the time. One

of the more familiar examples might be thinking about 3-space, right?

The Cartesian analysis of 3-space is based on the idea that you can

think about a vector location in 3-space as having components.

There's a component in the x direction, the y direction, the z direction.

That's completely analogous to the way we're thinking about Fourier

representations for signals.

So just like we would think about synthesizing the location of a point by

adding together three pieces, and we would think about analyzing a

point to figure out how big the components are in each of those

directions, it's exactly the same when we think about Fourier series.

We think about representing a signal as a sum of things. So the sum is

precisely the same.



This one happens to have an infinite number of terms, [? eh. ?] The

top one has three terms, [? eh. ?] The principles are very similar. So

we think about representing a signal as a sum of components. We

think about representing a point in 3-space as a sum of components,

and we think about analyzing the signal or the vector in 3-space, so

that we figure out what each of those components are.

And we do it in an operation where it's actually very convenient to think

about the decomposition of the Fourier components using precisely the

same language that we would use for thinking about vector spaces. So

we would think about-- in the case of the Fourier, we think about

integrating over the period sifts out a component. The analogous

operation for 3-space is to think about a dot product. The way you take

a vector and figure out the component in the x direction is to dot it with

it, the dot product.

In the Fourier case, we think about it as being an inner product. The

idea is completely analogous. So we think about having the inner

product of two things-- the reference direction and the vector. So

reference direction and vector-- we think about it exactly the same

way, except now it's an inner product, which means that after we've

multiplied, we have to integrate. That's the only difference between

inner product. Inner product implies some are [? integrated ?] after

you've done the multiplication.

So we do exactly the same thing, except that now we think about the

inner product of a and b. That's just the integral, where we take the

complex conjugate of one of the signals only because by defining it

with a complex conjugate there, we set up the inner product so that the

answer is zero unless we take the inner product of two things in the

same direction. OK? By putting the minus sign there, if the two

reference directions, that is to say the one characterized by k and m,

the ones characterized by k and m, the inner product will be zero if we

take the complex conjugate as long as k is not equal to m. k equals m

is the only not zero component. OK, is that all clear?



So to make sure that it's clear, here's a question. How many of the

following pairs of functions are orthogonal in T equals 3? Part of the

goal of the exercise is to figure out what the little caveat in T equals

three means. So look at your neighbor, say hello, figure out a number

between 0 and 4.

[SIDE CONVERSATIONS]

OK, so how many signals, how many of the pairs are orthogonal to

each other? Raise your hand with some number between 0 and 4,

unless you're completely bizarre and raise five, I mean. OK, come on,

come on. Higher, so I can see them. Remember if you're wrong. It's

your partner's fault, it's not your fault.

OK, not quite. A lot of bad partners, no, no. Let's do the first one. Is the

cos of 2 pi t orthogonal to the sine of 2 pi t over the interval capital T

equals 3? Yes? No.

I haven't a clue. I don't care. No, no, no, no. You all care, no. Are they

orthogonal? So what do you-- how do I formally ask the question are

they are orthogonal?

OK, so it's either the last slide or the next slide. So go back to the last

slide. What's it mean if they're orthogonal? Yeah?

AUDIENCE: [INAUDIBLE]

PROFESSOR: So how do I take the dot product? What do I do?

AUDIENCE: [INAUDIBLE] conjugate.

PROFESSOR: Conjugate 1. So I want to-- I'm thinking about 1 over T, the integral

over T, a star of T, b of t, dt. Right? So the t comes in here, right, I'm

integrating over a period t. So I take the two functions and I multiply

them together.

So I have this function, and I have that function. I multiply them

together. If you multiply two sinusoids of the same frequency but



different phase, what do you get? Another sinusoid, right? So you all

know all these complicated trig relationships, right?

Here's one of them. If you multiply cos of 2 pi T times the sine of pi T

you get half the sign of double the frequency. OK? You don't need to

memorize that. You just look at this picture, you look at that picture.

This one over the interval 3 has 3 periods. Right? There are 3 periods

of that waveform over the period of capital T. There's an integer

number 3, same here.

Here-- how many periods? Twice that. But it's exactly six. So you get a

pure sinusoid.

You get an integer number of periods. You integrate over an integer

number of periods, you get 0. They're orthogonal. Had I chosen the

period differently, they may not have been orthogonal. It depends on

the period. OK? So the inner product depends on the period, because

the inner product has something to do with integrator sum. And so the

range over which you sum or integrate matters.

How about cos 2 pi T cos 4 pi T? Orthogonal? Yeah?

AUDIENCE: Yes.

PROFESSOR: And the reason is?

AUDIENCE: So think if you wrapped [INAUDIBLE] together, then there's a lot of

symmetry that goes on [INAUDIBLE] is going to be 0.

PROFESSOR: So now we've got two different frequencies. But we still get these funny

cosine relationships that have to do with sums and differences. And the

sums and differences both happen to be periodic over 3, over the

interval capital T equals 3, right?

So we still get the property that the average value here, which is what

the interval was pulling out, the average is 0. So they're also

orthogonal. How about cos 2 pi T sine pi T? OK, I've asked two



questions, and they were both yes.

So I'm getting bored at this point, so by the theory of questions in

lecture, the answer is?

[LAUGHTER]

Now, wait a minute. I'm not that boring. Well, maybe. So is this periodic

over a capital T equals 3? Ah, excuse me. I didn't say the right

question, sorry.

Is this function have an integer number of periods in the time interval

capital T equals 3? What's the period-- what's the fundamental period

of this waveform?

AUDIENCE: 1.

PROFESSOR: 1. So it has 3 periods over the interval cap T equals 3. What about this

one?

AUDIENCE: 2.

PROFESSOR: Period is 2. How many periods are there in the time interval capital T

equals 3?

AUDIENCE: [INAUDIBLE]

PROFESSOR: A period is 2. How many periods are there-- 1 and 1/2, not an integer.

Bad news, right? So integer number three, not integer number.

If you were to integrate this over the period t equals 3, if I didn't

multiply them if I just did that, if I just thought about that integral, I

wouldn't get 0, right? There's more positives than there are negatives.

And when I multiply them, the same sort of thing happens. I get two big

peaks down and only one big peak up. It's because the resulting

waveform no longer has an integer number of periods in the interval

capital T equals 3. OK?

Last one-- cos 2 pi T e to the-- whoops. Is that what I actually said?



Good, I forgot the j. Because without the j, they would obviously not be

orthogonal. Obviously, right? OK. I didn't mean to ask something quite

that obvious.

So what about cos 2 pi T and e to the j 2 pi T? Orthogonal. Not, I'm as

clueless as I was on Part A. No, no, no, no, you're not. No, you're not.

No, you're not.

So how do you think about that? You can use Euler's expression. And

if there had been a j there, this would have been a correct expression.

OK? It's not quite a correct expression because I forgot to put the j

there.

But had there been a j there, it would have been cos 2 pi T plus j sine 2

pi T. And the awkward thing is that the cos and the cos are obviously

not orthogonal with each other. A signal is not orthogonal with itself,

OK?

So because part of this signal is that signal, those two signals are not

orthogonal. OK? Yes? OK, so that's kind of-- so that's the idea of

orthogonality. It's a very good way to think about decompositions.

And even though we only spent about half an hour last time, and only

about 15 minutes this time, that is the whole theory of Fourier series.

That doesn't mean we can't ask hard questions. There were a couple

of questions. Yes, you were first.

AUDIENCE: Is there a way to think about orthogonality using the Fourier

[INAUDIBLE].

PROFESSOR: Well, the Fourier coefficients are the result of orthogonality. I don't

think you can tell-- if I just told you a bunch of Fourier coefficients, I

don't know if you can tell me something about the orthogonality of the

underlying signals or not.

AUDIENCE: What if [INAUDIBLE].

PROFESSOR: Excuse me?



AUDIENCE: [INAUDIBLE] [? the period ?] and the Fourier [INAUDIBLE].

PROFESSOR: Let's see, so I'm not completely sure I know what you're asking.

Certainly if you tell me that the Fourier's coefficients are blah, blah,

blah, 3, 2 7, and 16. And if you tell me that you're working with a simple

Fourier series periodic in 3, then you've told me everything. And so

there's a way for me to backtrack that it was orthogonal. I am not sure

if I'm connecting with you, so if I'm not, ask me after lecture to make

sure that--

AUDIENCE: [INAUDIBLE]

PROFESSOR: Sure.

AUDIENCE: I think he's saying if you have two signals [INAUDIBLE] coefficients

[INAUDIBLE] two signals, can I tell if those two signals are orthogonal

[INAUDIBLE] the coefficients are orthogonal [INAUDIBLE].

PROFESSOR: If they have components in common, they couldn't possibly be

orthogonal. So I would answer yes to that question. So if that's what

you were-- so I think that's probably right. Does that sound right?

Yeah, OK. Yes?

AUDIENCE: I'm awfully confused by the complex conjugate, the [INAUDIBLE].

PROFESSOR: Yes, yes, yes.

AUDIENCE: So does that mean we're taking the complex conjugate [? of a ?] and

we're [? applying it ?] to b?

PROFESSOR: We're taking the complex conjugate of the entire function. At every

point in time, we take the complex conjugate of it. And it's especially

useful to think about if you're doing something of the form-- if a of t

were e to the j 2 pi mt and if b of t were e to the j 2 pi lt.

The only thing we're trying to do-- but this comes up quite frequently--

the only thing we're trying to do is when you conjugate one of these,

you rig it so that when you add the exponents, the result goes to 0 by



putting the minus up there. That's all.

AUDIENCE: It doesn't seem like we had to do any of that for the example we just

worked on. It seems like there were just like [? signals ?] [INAUDIBLE].

PROFESSOR: Oh, interesting. That's a very good point. That's interesting. So I didn't

intend to throw you a ringer.

These were signals, all of these except that one, are real functions of

time. That's why the complex conjugate didn't come up. So I apologize.

I wasn't trying to make it seem tricky.

OK, so it's because this function of time is everywhere real that we

didn't need to rehearse this. We did have to do it in that one. OK? OK,

so the point is that we've already covered, even though we've only

done a little bit of work in lecture, we've already covered all of the

theory.

What remains though is to do some practice. And also what remains is

to understand how this is useful. So it's not just music. The example

that I want to talk about today is speech. The same sort of thing that

we could do with music last time, we can do with speech. And here are

some utterances.

[AUDIO PLAYBACK]

- Bat, bait, bet, beet, bit, bite, bought, boat,

but, boot.

[END PLAYBACK]

PROFESSOR: All right, it was just intended to be a bunch of sounds that we can

analyze with Fourier analysis to get some insight into how to think

about, in particular, speech recognition and speech synthesis. So we

can take those utterances, and all I did was write a little Python

program to do the decomposition that I showed on the previous slides,

so that I could break these time waveforms. Here I'm illustrating one,

two, three, four, five, six periods. So I took one period of that sound



and ran it through that kind of an integral to break it into Fourier

components, which are showed here.

And what I want you to see is just like you could have recognized a

pattern here, and you might try to recognize which vowel is which by

the signature in time. An alternative, and far more useful way of

thinking about it, is to try to recognize the pattern in frequency. So

there are characteristic differences in the sounds, and we'll look at the

basis for why there are. There are characteristic differences in the

sound that can help us to identify automatically, by a machine, what

was being said.

And so what we want to do is learn to think about a pattern that

characterizes ah, ee, oo in the frequency domain, as opposed to the

time domain.

[AUDIO PLAYBACK]

- Bat beet, boot.

[END PLAYBACK]

PROFESSOR: So there's something different about those sounds that manifests a

difference in this Fourier signature. So that's one of the useful

applications of this. And we'd like to understand that better. There's a

really good physical reason why that happens.

And it has to do with the way we produce speech. So you can think

about speech as being generated by some source. Ultimately, the

source of my speech is somewhere down here, which always amuses

me when I see the cut off heads talking, like at Halloween and like on

some cartoon shows. Because you can't do that, right? Because the

source has to do with down here someplace, right?

My lungs push in. That pushes air through something and starts

making noise somehow. I'm going to focus today on things that we call

voiced-- in a voiced sound. Ah, in a voiced sound, it's caused by

vibrations of the vocal chords. So if you were to stick a camera down



someone's throat, this is the sort of thing that you would see.

It's an enormously complex structure whose mechanics are extremely

difficult to understand. Because what happens is when you want to

make a high sound, you tense the structure. You pull on some muscles

that pull the cords. The cords are normally rattling pretty fast.

And what you do is, you pull on a muscle that tenses them to make it

go higher. But your intuition should say, now wait a minute-- you're

making it longer to make it higher? And your intuition would be right.

Normally, long organ pipes are higher or lower in frequency?

AUDIENCE: Lower.

PROFESSOR: Lower. So you have to do a lot of mental calculations in order to move

these muscles correctly. So that the resulting frequency of the vibration

comes out right. It's not obvious, because two things happen as you

tense the muscle. The folds-- the vocal cords get longer which you

would think would make the frequency lower, but they get tighter,

which, of course, goes the other direction, right?

So it's a very complicated thing. And in fact, it's something that goes

bad with professional speakers. But even more, professional singers

often have a lot of trouble with the enormous stress that happens on

this structure with repeated use and repeated overuse. Anyway, this

takes a real beating. But that's ultimately the source of speech.

But if that were all you had, it wouldn't sound much like speech. A lot of

the interesting stuff comes from these cavities that you intentionally

manipulate as you're speaking to make the different characteristic

sounds. So the idea then is that you have a source that contains

information like frequency. What's the pitch of the utterance?

But you have this other thing, which is acting like a filter. If you think

about the whole thing as a system, we have a block which represents a

filter, which is the thing that has a frequency response. The frequency

response depends on how I've put my tongue in my mouth and how



I've opened my lips and stuff like that. We'll see that in a minute. But it

also depends on how the vocal folds-- it has an input, which is the

vocal folds.

So the idea then is the same kind of a source filter idea that we

motivated last time by way of the RC filter example. If you put a resistor

and a capacitor together with a source, a convenient way to think

about that is as a low pass filter. We think about it having a frequency

response. So the system, just the RC part, has a frequency response

which we can characterize by a Bode diagram.

So we can think about-- we did this last time-- so we can think about

the low frequencies go through without attenuation. The gain is 1, and

the phase is 0. So basically low frequencies go through the filter

without any change. High frequencies are attenuated. The higher the

frequency, the more the attenuation, and phase shifted by lagging pi

over 2. So that's a way of thinking about the RC circuit as a low pass

filter.

And it gives us insight in the kinds of signals that go through and don't

go through. So that, if we think about a signal like a square wave

having a Fourier series decomposition, it only has odd components

and the odd components fall with k. The magnitude of the component

is inverse with k. So we get components that, if I plot on a log scale,

the reciprocal relationship of the weight of the components, the

magnitude of the components, makes it a straight line with a slope of

minus 1.

And now we can think about putting this signal into the RC filter and

thinking about what the output should look like. If the frequency of the

square wave, if the fundamental frequency, 2 pi over the period, if 2 pi

over capital T, if 2 pi over capital T is some frequency that's low

compared to the corner frequency of the low pass filter, basically the

output of the filter, which is showed in green, overlaps the input, which

is showed in red. You can't tell the difference because all the

components have the same magnitude and phase as the input.



But if you change the frequency of the square wave so that the

fundamental is higher, some of the higher frequencies are attenuated

and phase shifted. The shape of the waveform, showed in green,

starts to deviate. If you go to still higher frequencies, the deviation's

even greater. And if you go to high enough frequencies, they're all in

the region where the magnitude is being attenuated by whatever

frequency. So my dependence of 1 over k becomes 1 over k squared,

and it goes from being a square wave to a triangle wave.

So that's a way of thinking about the signal transformation in terms of a

filter. We did that last time. What's going on with speech is exactly the

same thing. What we want to do is think about-- the glottis makes

some kind of a sound that goes into a filter.

The filter is this thing that is controlled by my tongue's position and my

jaw position and my lip position and stuff like that. And what comes out

is speech. To demonstrate that, here's a film that was made by Ken

Stevens. Ken Stevens was a professor in this department. He just

recently retired.

This was done when he was a graduate student. It's very hard to see

because the contrast is not great. But you have to take into

consideration this was made with X-rays. OK, we probably wouldn't do

this today. It was a relatively large exposure to x-rays, which we sort of

frown on these days.

Just so you're not too worried, Ken Stevens, when he retired, had the

longest teaching career in our history. He was a lecturer who actively

lectured for 50 years. So he seemed to have done OK. He survived. So

you don't need to worry about what happened to him.

But we probably wouldn't repeat this. It's a little hard to see. The bone

is easy, right, because x-rays don't go through bones very well. What

you can just barely see is his lips.

And it's important to watch the lips, too. It's also important that his chin



is on a chin rest to simplify analysis. The idea of this was to get

quantitative measurements to fit the source filter idea. OK, so now I'm

going to play a film, a recording of him.

[VIDEO PLAYBACK]

- Test. Test. Test. [? The tongue. ?] [? The

tongue. ?] The [INAUDIBLE]. The

[INAUDIBLE]. [? The neck. ?] [INAUDIBLE].

[INAUDIBLE]. [INAUDIBLE]. [INAUDIBLE].

[INAUDIBLE]. [INAUDIBLE]. [? Fox. ?] [?

Clock. ?] The [INAUDIBLE]. The

[INAUDIBLE]. [INAUDIBLE]. [? Took. ?] [?

Two. ?] [INAUDIBLE]. [? Tot. ?] [? Tech. ?]

[INAUDIBLE]. [INAUDIBLE]. [INAUDIBLE].

[INAUDIBLE]. [INAUDIBLE]. [INAUDIBLE].

Why did [INAUDIBLE] set the [INAUDIBLE] on top of his desk? I have

put [? blood under ?] [? two clean ?] [? yellow shoes. ?]

[END VIDEO PLAYBACK]

[LAUGHTER]

PROFESSOR: OK, so what you were supposed to see is that the thing that we

associate with speech is only a small part of it. His lips were obviously

moving. That's what we see.

But if you were paying attention, his tongue was going up and down

not a little bit, but a lot. So the gap between his tongue and the roof of

his mouth was going from 0 to about that far. The velum back here

was opening very broadly on occasion. So there was a significant

variation in the shape of the structure through which the glottis wave

form was passing. And that's the basis of the filtering that gives rise to

the different speech sounds.

So to convince you of that, here I have a carefully machined item. Let's

see. I don't want this one. I want this one.



So this is a Japanese oo. OK, now I don't know Japanese, so I have to

just sort of trust the guy who made this that it actually sounds like a

Japanese oo. The second one I'll show is a Japanese ee, which

actually sounds more like an ee to me.

But anyway, this model was made from measurements of the type that

I just showed with Ken. So the idea was to estimate the size of those

cavities through which the air was passing, and then make, by

machining in Plexiglas, a structure that has that shape. So this was an

early test of whether the source filter idea works.

So if that is the explanation for how speech is generated, then I ought

to be able to take a boring sound of the type that's generated by the

glottis--

[BUZZING SOUND]

And put it through this, and it should sound more like a vowel. OK? Got

it? Know what I'm talking about? So this is a Japanese oo.

[BUZZING SOUND]

[COMBINES BUZZING SOUND WITH 'OO' SOUND]

I don't know if anybody knows Japanese. I don't know if that sounds

like an oo. Does anybody know Japanese, and does that sound like an

oo or not? OK, I'll pass.

[BUZZING SOUND]

This is an ee. OK, now notice that the ee looks very different. Right?

The question is whether that's a big enough difference to make the

difference between an oo and an ee. I'm pressing the same button,

nothing up my sleeve, nothing-- OK, so same button.

[COMBINES BUZZING SOUND WITH 'EE' SOUND]



OK, so what you're supposed to be convinced of is there is enough

information in the shape of the vocal structures to account for the

difference in the sounds. Now of course, we don't really care about the

acoustics if we're trying to, for example, synthesize or analyze speech.

We don't particularly care about that.

We do like to know that there is a theory that underlies it, right? And

there's a very sound physical basis for why we should think about the

source filter idea. When I say source filter, source filter-- so everybody

calls it the source filter model of speech. So is there any good physical

reason for why that should be true?

Of course, what we care about is the frequency response. So here

what's showed is measurements of frequency responses taken from

speakers. So now we don't do the x-ray thing. All we do is record

somebody saying heed, had, hood, haw'd, who'd.

And we look at men, women, and children, and we characterize how

their frequency responses change when they make those different

sounds. So what's showed here is that you get a relatively good fit by

thinking about the frequency response having three formants. The

formants are the peak frequencies.

There's a theory, which I won't go into, for how you take this shape and

turn it into a formant frequency. And given just the formant

frequencies, or given the frequency response measured at uniform

spacing across frequencies, there is a theory for how you can generate

the smooth line, which is really-- this is an 11th order [? fit, ?] which

means that there are 11 poles and no zeros. So what you do to get this

shape then is take the locations and amplitudes of the formant

frequencies and do a fit using poles.

And so here's a table showing measured formant frequencies, F1, F2,

and F3, for whatever, six different sounds for three different categories

of speakers. OK? And that's kind of a complete analysis then in terms

of the source filter idea. So this figure summarizes the idea.



We think about source filters. So the source is the glottis. The filter is

the formants created by the throat. And speech is the thing that comes

out of the source filter. The source is some periodic waveform caused

by the banging together of the vocal folds. The filter is the frequency

response of the throat.

And the result, then, is just passing this glottis wave form-- so this is a

measured-- by sticking a microphone in somebody's throat, this is a

measurement of what the glottis acoustics looks like. This is a Fourier

decomposition of that periodic waveform. Then this is the frequency

response of that thing. And this is the Fourier coefficients of the output

for different sounds.

So here is the frequency. So the same glottis signal underlies and ee

sound and ah sound and generates two different spectra. We call that

combination of magnitudes and angles. We call that the Fourier

spectrum. So you get two different spectra, depending on the filter

shape. OK?

And that's the basis-- this theory, this source filter idea-- is the basis of

the current technology for speech recognition and speech production.

So I actually cheated. Those sounds that I played earlier-- bit, bat,

bought, beat, all those things-- those were actually synthetic speech.

OK, all I did is I ran a speech synthesizer, and I said, synthesize bit. So

that was really a synthesized thing. That was not a real person.

And so the synthesizer used this theory in order to generate this

synthetic speech. We also use this theory in order to recognize

speech. And you'll do a homework problem in Homework 10, I think it

is, in which you'll build the primitive front end of a speech recognizer

using this theory. And I'll give you a couple of utterances of different

vowels and you'll have to classify which vowel is being said, according

to some automatic speech recognizer based on this theory.

The theory is also just fun, because a theory lets us figure out



anomalies. So when somebody has a speech impediment, for

example, when I did, when I was a little kid I did. And I was sent to

speech school. Now they do a much better job because they do

analysis to figure out what I'm doing wrong, using this sort of source

filter idea.

We can also use the source filter idea to understand paradoxes. So for

example, I've told you before I work on hearing aids. I tried to make

hearing aids hear. And so people with hearing deficiencies like mine,

where I have sort of progressive age-related because I'm old, right,

that's what happens.

I have age-related hearing loss, which means that I'm losing high

frequencies. I'm less sensitive to high frequencies. People like me,

which is the vast majority of people my age-- it's easier to understand

male speech than female speech. Why? Higher frequencies.

So those higher frequencies shift some of the important stuff that I

should be listening to into frequencies I don't hear anymore. Right? So

that's a way of using this theory to try to understand what's wrong with

me. But there's also things-- it's not just me. Normal people have

trouble distinguishing female speech, especially in taxing

environments, and one of those is singing.

So if you consider altos and sopranos, sopranos are like, the worst,

right? Because they are not only female, but they're at the high end the

females. And there are those who complain about not being able to

understand female singers. OK, so here's a demo that will help us to

understand whether that's a valid kind of a criticism or not.

So what I've got is a professional singer singing, la, la, la, la-- on a

scale. So from low frequency to high frequency, then a different sound,

a different sound, a different sound, a different sound. So the first thing

that I want to do-- I want you to listen to those different sounds as she

goes across the scale. Then I'm going to play just the low ones and

just the high ones, just the low frequency ones and just the high



frequency ones. So first, the different scales-- la, la, lore, loo, lee, OK?

[AUDIO PLAYBACK]

- La, la, la, la, la, la, la, la, la, la, la, la, la,

la, la, la. La. Lore, lore, lore, lore, lore,

lore, lore, lore, lore, lore, lore, lore, lore,

lore, lore, lore, lore. Lore. Loo, loo, loo,

loo, loo, loo, loo, loo, loo, loo, loo, loo, loo,

loo, loo, loo. Loo. Ler, ler, ler, ler, ler, ler,

ler, ler, ler, ler, ler, ler, ler, ler, ler, ler. Ler.

Lee, lee, lee, lee, lee, lee, lee, lee, lee, lee,

lee, lee, lee, lee, lee, lee. Lee.

[END PLAYBACK]

PROFESSOR: OK, so now what I've done is I've sliced out the lowest frequency, the

very first of the scale from each of the sounds and pasted them

together to get the low frequency run. And then I took out the high

ones and pasted them together. OK? Exactly the same sounds, just

played in a different order. So first the low frequency ones.

SINGER: La. Lore. Loo. Ler. Lee. And the high frequency ones. La. Lore. Loo.

Ler. Lee.

[LAUGHTER]

PROFESSOR: It's not her fault. She's doing everything right. And you can see that.

Here is, again, a Python program analyzing those same segments. So

what's shown here is the ee, the filter derived from the ee, by thinking

about the lee, lee, lee, lee, lee, lee-- by looking at that sequence, and

averaging across the frequencies. So here's the filter.

Here's the filtered glottis spectrum for a low frequency and

intermediate frequency and high frequency. What's the difference

between the low, middle, and high? What's characteristically different

at low and high?



AUDIENCE: [INAUDIBLE] frequency, like high amplitude.

PROFESSOR: So if you look at the low frequency, the low pitch, there are more

frequency components in a given range. So if I say analyze the

frequencies between 0 and 1,000 hertz, 1,000 cycles per second,

there are more lines when you have a low frequency. And so you get

the density of the lines is greater for the low frequency utterance than it

is for the high frequency utterance.

The low frequency utterance is spaced close enough that you can

clearly figure out this pattern from that spacing, because there are

multiple lines per peak. The problem is that the speech waveforms

have very sharp resonances. The peaks are narrow.

So that as you go to a higher frequency, now it's very hard to see. So

where there was two lines characterizing this guy, now there's one.

And at the highest frequency, there's nothing there.

Similarly with these peaks, again, several lines representing each

peak. One line representing-- nothing representing this peak, nothing

representing that peak. There is nothing about ee in that signal.

And if you do the same analysis for ah, you get the same result.

There's nothing about ee, and there's nothing about ah. There's just

nothing there. There's no way anybody is going to tell those two

sounds apart.

So if the singer put her voice, her vocal tract, in precisely the right

location, there would be no difference between those sounds, OK,

regardless of what the director said. OK, so that's the problem. So

that's a way of using the Fourier analysis to gain some insight into

some anomalous situations. Yeah?

AUDIENCE: Does this have more to do with the rate at which you're sampling?

PROFESSOR: No. It has to do only with the frequency content of the glottis waveform.

You can think about it as sampling. And that's a good insight, because



the Fourier series only has components at integer multiples of a base

frequency. So that means we're sampling in frequency, not in time.

So we have this potentially continuous frequency response, which is

characterizing this. That is continuous. I could excite this at any

frequency that I want to. But the glottis waveform of the singer is only

sampling that at particular frequencies-- C, C prime, C double prime, B,

B prime, B double prime, right? So there's only certain frequencies at

which the singer is sampling this.

So there is a way of thinking about it as sampling. But it's not sampling

due to my ADD converter or anything like that. It's sampling in

frequency. So the point is that this kind of a source filter idea, and

more generally, the filter idea, is such a powerful representation that

next time we'll think about how to do the same sort of thing for non-

periodic [? stimuli. ?] See you then.


