
2 
Difference equations and modularity 

2.1	 Modularity: Making the input like the output 17 
2.2	 Endowment gift 21 
2.3	 Rabbits 25 

The goals of this chapter are: 

•	 to illustrate modularity and to describe systems in a modular way; 

•	 to translate problems from their representation as a verbal descrip­
tion into their representation as discrete-time mathematics (differ­
ence equations); and 

•	 to start investigating the simplest second-order system, the second-
simplest module for analyzing and designing systems. 

The themes of this chapter are modularity and the representation of ver­
bal descriptions as discrete-time mathematics. We illustrate these themes 
with two examples, money in a hypothetical MIT endowment fund and 
rabbits reproducing in a pen, setting up difference equations to represent 
them. The rabbit example, which introduces a new module for building 
and analyzing systems, is a frequent visitor to these chapters. In this chap­
ter we begin to study how that module behaves. Before introducing the 
examples, we illustrate what modularity is and why it is useful. 

2.1 Modularity: Making the input like the output 

A common but alas non-modular way to formulate difference and differ­
ential equations uses boundary conditions. An example from population 
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growth illustrates this formulation and how to improve it by making it 
modular. The example is the population of the United States. The US pop­
ulation grows at an annual rate of roughly 1%, according to the World Fact-
Book [2], and the US population is roughly 300 million in 2007. What will 
be the US population be in 2077 if the growth rate remains constant at 1%? 

Pause to try 1. What is the population equation and boundary con­
dition representing this information? 

The difference equation for the population in year n is 

p[n] = (1 + r)p[n − 1] (population equation), 

where r = 0.01 is the annual growth rate. The boundary condition is 

p[2007] = 3 × 108 (boundary condition). 

To find the population in 2077, solve this difference equation with bound­
ary condition to find p[2077]. 

Exercise 1. What is p[2077]? How could you have quickly ap­
proximated the answer? 

You might wonder why, since no terms are subtracted, the population 
equation is called a difference equation. The reason is by analogy with 
differential equations, which tell you how to find f(t) from f(t − Δt), with 
Δt going to 0. Since the discrete-time population equation tells us how to 
find f[n] from f[n − 1], it is called a difference equation and its solution is 
the subject of the calculus of finite differences. When the goal – here, the 
population – appears on the input side, the difference equation is also a 
recurrence relation. What recurrence has to do with it is the topic of an 
upcoming chapter; for now take it as pervasive jargon. 

The mathematical formulation as a recurrence relation with boundary con­
dition, while sufficient for finding p[2077], is messy: The boundary condi­
tion is a different kind of object from the solution to a recurrence. This 
objection to clashing categories may seem philosophical – in the colloquial 
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meaning of philosophical as irrelevant – but answering it helps us to un­
derstand and design systems. Here the system is the United States. The 
input to the system is one number, the initial population p[2007]; however, 
the output is a sequence of populations p[2008], p[2009], . . .. In this for­
mulation, the system’s output cannot become the input to another system. 
Therefore we cannot design large systems by combining small, easy-to­
understand systems. Nor we can we analyze large, hard-to-understand 
systems by breaking them into small systems. 

Instead, we would like a modular formulation in which the input is the 
same kind of object as the output. Here is the US-population question 
reformulated along those lines: If x[n] people immigrate into the United states 
in year n, and the US population grows at 1% annually, what is the population in 
year n? The input signal is the number of immigrants versus time, so it is 
a sequence like the output signal. Including the effect of immigration, the 
recurrence is 

p[n] = (1 + r)p[n − 1] + x[n] . ���� � �� � ���� 
output reproduction immigration 

The boundary condition is no longer separate from the equation! Instead 
it is part of the input signal. This modular formulation is not only elegant; 
it is also more general than is the formulation with boundary conditions, 
for we can recast the original question into this framework. The recasting 
involves finding an input signal – here the immigration versus time – that 
reproduces the effect of the boundary condition p[2007] = 3 × 108 . 

Pause to try 2. What input signal reproduces the effect of the 
boundary condition? 

The boundary condition can be reproduced with this immigration sched­
ule (the input signal): 

3 × 108 if n = 2007;x[n] =  
0 otherwise. 

This model imagines an empty United States into which 300 million people 
arrive in the year 2007. The people grow (in numbers!) at an annual rate 
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of 1%, and we want to know p[2077], the output signal (the population) in 
the year 2077. 

The general formulation with an arbitrary input signal is harder to solve 
directly than is the familiar formulation using boundary conditions, which 
can be solved by tricks and guesses. For our input signal, the output signal 
is 

3 · 108 × 1.01n−2007 for n � 2007;p[n] =  
0 otherwise. 

Exercise 2. Check that this output signal satisfies the boundary 
condition and the population equation. 

In later chapters you learn how to solve the formulation with an arbi­
trary input signal. Here we emphasize not the method of solution but the 
modular formulation where a system turns one signal into another signal. 
This modular description using signals and systems helps analyze com­
plex problems and build complex systems. 

To see how it helps, first imagine a world with two countries: Ireland and 
the United States. Suppose that people emigrate from Ireland to the United 
States, a reasonable model in the 1850’s. Suppose also that the Irish pop­
ulation has an intrinsic 10 annual decline due to famines and that another 
10% of the population emigrate annually to the United States. Ireland and 
the United States are two systems, with one system’s output (Irish emigra­
tion) feeding into the other system’s input (the United States’s immigra­
tion). The modular description helps when programming simulations. In­
deed, giant population-growth simulations are programmed in this object-
oriented way. Each system is an object that knows how it behaves – what 
it outputs – when fed input signals. The user selects systems and spec­
ifies connections among them. Fluid-dynamics simulations use a similar 
approach by dividing the fluid into zillions of volume elements. Each ele­
ment is a system, and energy, entropy, and momentum emigrate between 
neighboring elements. 

Our one- or two-component population systems are simpler than fluid-
dynamics simulations, the better to illustrate modularity. Using two ex­
amples, we next practice modular description and how to represent verbal 
descriptions as mathematics. 
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2.2 Endowment gift 

The first example for representing descriptions as mathematics involves a 
hypothetical endowment gift to MIT. A donor gives �107 dollars to MIT 
to support projects proposed and chosen by MIT undergraduates! MIT 
would like to use this fund for a long time and draw �0.5 × 106 every 
year for a so-called 5% drawdown. Assume that the money is placed in a 
reliable account earning 4% interest compounded annually. How long can 
MIT and its undergraduates draw on the fund before it dwindles to zero? 

Never make a calculation until you know roughly what the answer will be! This 
maxim is recommended by John Wheeler, a brilliant physicist whose most 
famous student was MIT alum Richard Feynman [9]. We highly recom­
mend Wheeler’s maxim as a way to build intuition. So here are a few esti­
mation questions to get the mental juices flowing. Start with the broadest 
distinction, whether a number is finite or infinite. This distinction suggests 
the following question: 

Pause to try 3. Will the fund last forever? 

Alas, the fund will not last forever. In the first year, the drawdown is 
slightly greater than the interest, so the endowment capital will dwindle 
slightly. As a result, the next year’s interest will be smaller than the first 
year’s interest. Since the drawdown stays the same at $500,000 annually 
(which is 5% of the initial amount), the capital will dwindle still more in 
later years, reducing the interest, leading to a greater reduction in interest, 
leading to a greater reduction in capital. . .  Eventually the fund evaporates. 
Given that the lifetime is finite, roughly how long is it? Can your great-
grandchildren use it? 

Pause to try 4. Will the fund last longer than or shorter than 100 
years? 

The figure of 100 years comes from the difference between the outflow 
– the annual drawdown of 5% of the gift – and the inflow produced by 
the interest rate of 4%. The difference between 5% and 4% annually is 
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δ = 0.01/year. The dimensions of δ are inverse time, suggesting an en­
dowment lifetime of 1/δ, which is 100 years. Indeed, if every year were 
like the first, the fund would last for 100 years. However, the inflow from 
interest decreases as the capital decreases, so the gap between outflow and 
inflow increases. Thus this 1/δ method, based on extrapolating the first 
year’s change to every year, overestimates the lifetime. 

Having warmed up with two estimates, let’s describe the system mathe­
matically and solve for the true lifetime. In doing so, we have to decide 
what is the input signal, what is the output signal, and what is the system. 
The system is the least tricky part: It is the bank account paying 4 interest. 
The gift of $10 million is most likely part of the input signal. 

Pause to try 5. Is the $500,000 annual drawdown part of the output 
or the input signal? 

The drawdown flows out of the account, and the account is the system, 
so perhaps the drawdown is part of the output signal. No!! The output 
signal is what the system does, which is to produce or at least to compute 
a balance. The input signal is what you do to the system. Here, you move 
money in or out of the system: 

bank 
account 

money 
in or out balance 

The initial endowment is a one-time positive input signal, and the annual 
drawdown is a recurring negative input signal. To find how long the en­
dowment lasts, find when the output signal crosses below zero. These 
issues of representation are helpful to figure out before setting up mathe­
matics. Otherwise with great effort you create irrelevant equations, where­
upon no amount of computing power can help you. 

Now let’s represent the description mathematically. First represent the 
input signal. To minimize the large numbers and dollar signs, measure 
money in units of $500,000. This choice makes the input signal dimension­
less: 

X = 20, −1, −1, −1, −1, . . . 
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We use the notation that a capital letter represents the entire signal, while a 
lowercase letter with an index represents one sample from the signal. For 
example, P is the sequence of populations and p[n] is the population in 
year n. 

The output signal is 

Y = 20, ?, ?, ?, . . .  

Pause to try 6. Explain why y[0] = 20. 

The problem is to fill in the question marks in the output signal and find 
when it falls below zero. The difference equation describing the system is 

y[n] = (1 + r)y[n − 1] + x[n], 

where r is the annual interest rate (here, r = 0.04). This difference equation 
is a first-order equation because any output sample y[n] depends on the 
one preceding sample y[n − 1]. The system that the equation represents is 
said to be a first-order system. It is the simplest module for building and 
analyzing complex systems. 

Exercise 3. Compare this equation to the one for estimating the 
US population in 2077. 

Now we have formulated the endowment problem as a signal processed 
by a system to produce another signal – all hail modularity! – and rep­
resented this description mathematically. However, we do not yet know 
how to solve the mathematics for an arbitrary input signal X. But here we 
need to solve it only for the particular input signal 

X = 20, −1, −1, −1, −1, . . . .  

With that input signal, the recurrence becomes 

y[n] = 	 1.04 · y[n − 1] − 1 n > 0;

20 n = 0.


The y[0] =  20 reflects that the donor seeds the account with 20 units of 
money, which is the $10,000,000 endowment. The −1 in the recurrence 
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reflects that we draw 1 unit every year. Without the −1 term, the solution 
to the recurrence would be y[n] ∼ 1.04n, where the ∼ symbol means ‘except 
for a constant’. The −1 means that simple exponential growth is not a 
solution. However, −1 is a constant so it may contribute only a constant to 
the solution. That reasoning is dubious but simple, so try it first. Using a 
bit of courage, here is a guess for the form of the solution: 

y[n] = A · 1.04n + B (guess), 

where A and B are constants to be determined. Before finding A and B, 
figure out the most important characteristic, their signs. So: 

Pause to try 7. Assume that this form is correct. What are the signs 
of A and B? 

Since the endowment eventually vanishes, the variable term A ·1.04n must 
make a negative contribution; so A < 0. Since the initial output y[0] is 
positive, B must overcome the negative contribution from A; so  B > 0. 

Pause to try 8. Find A and B. 

Solving for two unknowns A and B requires two equations. Each equation 
will probably come from one condition. So match the guess to the known 
balances at two times. The times (values of n) that involve the least calcu­
lation are the extreme cases n = 0 and n = 1. Matching the guess to the 
behavior at n = 0 gives the first equation: 

20 = A + B (n = 0 condition). 

To match the guess to the behavior at n = 1, first find y[1]. At  n = 1, 
which is one year after the gift, 0.8 units of interest arrive from 4% of 20, 
and 1 unit leaves as the first drawdown. So 

y[1] = 20 + 0.8 − 1 = 19.8. 

Matching this value to the guess gives the second equation: 

19.8 = 1.04A + B (n = 1 condition). 
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Both conditions are satisfied when A = −5 and B = 25. As predicted, 
A < 0 and B > 0. With that solution the guess becomes 

y[n] = 25 − 5 × 1.04n. 

This solution has a strange behavior. After the balance drops below zero, 
the 1.04n grows ever more rapidly so the balance becomes negative ever 
faster. 

Exercise 4.	 Does that behavior of becoming negative more and 
more rapidly indicate an incorrect solution to the 
recurrence relation, or an incomplete mathematical 
translation of what happens in reality? 

Exercise 5. The guess, with the given values for A and B, works 
for n = 0 and n = 1. (How do you know?) Show 
that it is also correct for n > 1. 

Now we can answer the original question: When does y[n] fall to zero? 
nAnswer: When 1.04 > 5, which happens at n = 41.035 . . .. So MIT can 

draw on the fund in years 1, 2, 3, . . . , 41, leaving loose change in the ac­
count for a large graduation party. The exact calculation is consistent with 
the argument that the lifetime be less than 100 years. 

Exercise 6. How much loose change remains after MIT draws 
its last payment? Convert to real money! 

2.3 Rabbits 

The second system to represent mathematically is the fecundity of rabbits. 
The Encyclopedia Britannica (1981 edition) states this population-growth 
problem as follows [6]: 
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A certain man put a pair of rabbits in a place surrounded on all sides by a wall. 
How many pairs of rabbits can be produced from that pair in a year if it is sup­
posed that every month each pair begs a new pair which from the second month 
on becomes productive? 

That description is an English representation of the original Latin. We first 
represent the verbal description mathematically and then play with the 
equations to understand how the system behaves. It is the simplest system 
beyond the first-order systems like the endowment, so it is an important 
module for building and analyzing complex systems. 

2.3.1 From words to recurrence 

Before representing the system mathematically, we describe it modularly 
using signals and systems by finding a system, an input signal, and an 
output signal. It is usually easiest to begin by looking for the system since 
it is the active element. The phrase ‘surrounding on all sides by a wall’ 
indicates a candidate for a system. The system is the inside of the wall, 
which is where the rabbits reproduce, together with the rules under which 
rabbits reproduce. 

Pause to try 9. What is the input signal? 

An input to the system is placing rabbits into it or taking them from it. 
The input signal is the number of pairs that enter the system at month n, 
where the signal would be negative if rabbits emigrate from the system to 
seek out tastier grass or other rabbit friends. 

Pause to try 10. What is the output signal? 

Some pairs are placed into the system as children (the immigrants); other 
pairs are born in the system (the native born). The sum of these kinds of 
pairs is the output signal. 

To describe the system mathematically, decompose it by type of rabbit: 

1. children, who cannot reproduce but become adults in one month; and 

2. adults, who reproduce that month and thereafter. 
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Let c[n] be the number of child pairs at month n and a[n] be the number 
of adult pairs at month n. These intermediate signals combine to make the 
output signal: 

f[n] = a[n] + c[n] (output signal). 

Pause to try 11. What equation contains the rule that children be­
come adults in one month? 

Because children become adults in one month, and adults do not die, the 
pool of adults grows by the number of child pairs in the previous month: 

a[n] = a[n − 1] + c[n − 1] (growing-up equation). 

The two terms on the right-hand side represent the two ways to be an 
adult: 

1. You were an adult last month (a[n − 1]), or 

2. you were a child last month (c[n − 1]) and grew up. 

The next equation says that all adults, and only adults, reproduce to make 
new children: 

c[n] = a[n − 1]. 

However, this equation is not complete because immigration also con­
tributes child pairs. The number of immigrant pairs at month n is the 
input signal x[n]. So the full story is: 

c[n] = a[n − 1] + x[n] (child equation) 

Our goal is a recurrence for f[n], the total number of pairs. So we eliminate 
the number of adult pairs a[n] and the number of child pairs c[n] in favor 
of f[n]. Do it in two steps. First, use the growing-up equation to replace 
a[n − 1] in the child equation with a[n − 2] + c[n − 2]. That substitution 
gives 

c[n] = a[n − 2] + c[n − 2] + x[n]. 
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Since f[n] = c[n] + a[n], we can turn the left side into f[n] by adding a[n]. 
The growing-up equation says that a[n] is also a[n − 1] + c[n − 1], so add 
those terms to the right side and pray for simplification. The result is 

c[n] + a[n] = a[n − 2] + c[n − 2] +x[n] + a[n − 1] + c[n − 1] . � �� � � �� � � �� � 
f[n] f[n−2] f[n−1] 

The left side is f[n]. The right side contains a[n − 2] + c[n − 2], which is 
f[n − 2]; and a[n − 1] + c[n − 1], which is f[n − 1]. So the sum of equations 
simplifies to 

f[n] = f[n − 1] + f[n − 2] + x[n]. 

The Latin problem description is from Fibonacci’s Liber Abaci [10], pub­
lished in 1202, and this equation is the famous Fibonacci recurrence but 
with an input signal x[n] instead of boundary conditions. 

This mathematical representation clarifies one point that is not obvious in 
the verbal representation: The number of pairs of rabbits at month n de­
pends on the number in months n−1 and n−2. Because of this dependence 
on two preceding samples, this difference equation is a second-order dif­
ference equation. Since all the coefficients are unity, it is the simplest equa­
tion of that category, and ideal as a second-order system to understand 
thoroughly. To build that understanding, we play with the system and see 
how it responds. 

2.3.2 Trying the recurrence 

To play with the system described by Fibonacci, we need to represent Fi­
bonacci’s boundary condition that one pair of child rabbits enter the walls 
only in month 0. The corresponding input signal is X = 1, 0, 0, 0, . . .. Us­
ing that X, known as an impulse or a unit sample, the recurrence produces 
(leaving out terms that are zero): 

f[0] = x[0] = 1,


f[1] = f[0] = 1,


f[2] = f[0] + f[1] = 2,


f[3] = f[1] + f[2] = 3,


. . .  
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When you try a few more lines, you get the sequence: F = 1, 1, 2, 3, 5, 8, 13, 21, 34, . . .. 
When you tire of hand calculation, ask a computer to continue. Here is 
slow Python code to print f[0], f[1],. . .,f[19]: 

def f(n): 
if n < 2:  return 1 
return f(n-1) + f(n-2) 

print [f(i) for i in range(20)] 

Exercise 7. Write the corresponding Matlab or Octave code, 
then rewrite the code in one of the languages – 
Python, Matlab, or Octave – to be efficient. 

Exercise 8. Write Matlab, Octave, or Python code to find f[n] 
when the input signal is 1, 1, 1, . . .. What is f[17]? 

2.3.3 Rate of growth 

To solve the recurrence in closed form – meaning an explicit formula for 
f[n] that does not depend on preceding samples – it is helpful to investigate 
its approximate growth. Even without sophisticated techniques to find the 
output signal, we can understand the growth in this case when the input 
signal is the impulse. 

Pause to try 12. When the input signal is the impulse, how fast does 
f[n] grow? Is it polynomial, logarithmic, or expo­
nential? 

From looking at the first few dozen values, it looks like the sequence grows 
quickly. The growth is almost certainly too rapid to be logarithmic and, 
almost as certain, too fast to be polynomial unless it is a high-degree poly­
nomial. Exponential growth is the most likely candidate, meaning that an 
approximation for f[n] is 
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f[n] ∼ zn 

where z is a constant. To estimate z, play with the recurrence when n > 0, 
which is when the input signal is zero. The f[n] are all positive and, since 
f[n] = f[n − 1] + f[n − 2] when n > 0, the samples are increasing: f[n] > 
f[n − 1]. This bound turns f[n] = f[n − 1] + f[n − 2] into the inequality 

f[n] < f[n − 1] + f[n − 1]. 

So f[n] < 2f[n − 1] or f[n]/f[n − 1] < 2; therefore the upper bound on z 
is z < 2. This bound has a counterpart lower bound obtained by replacing 
f[n − 1] by f[n − 2] in the Fibonacci recurrence. That substitution turns 
f[n] = f[n − 1] + f[n − 2] into 

f[n] > f[n − 2] + f[n − 2]. 

The right side is 2f[n − 2] so f[n] > 2f[n − 2]. This bound leads to a lower √ 
bound: z2 > 2 or z >  2. The range of possible z is then 

√ 
2 < z < 2.  

Let’s check the bounds by experiment. Here is the sequence of ratios f[n]/f[n− 
1] for n = 1, 2, 3, . . .: 

1.0, 2.0, 1.5, 1.666 . . . , 1.6, 1.625, 1.615 . . . , 1.619 . . . , 1.617 . . .  

The ratios seem to oscillate around 1.618, which lies between the predicted √ 
bounds 2 and 2. In later chapters, using new mathematical representa­
tions, you learn how to find the closed from for f[n]. We have walked two 
steps in that direction by representing the system mathematically and by 
investigating how f[n] grows. 

Exercise 9. Use a more refined argument to improve the upper 

bound to z <  
√ 

3. 

Exercise 10. Does the number 1.618 look familiar?
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Exercise 11. [Hard!] Consider the same system but with one rab­
bit pair emigrating into the system every month, 
not only in month 0. Compare the growth with 
Fibonacci’s problem, where one pair emigrated in 
month 0 only. Is it now faster than exponential? If 
yes, how fast is it? If no, does the order of growth 
change from z ≈ 1.618? 
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