
2
Difference equations and modularity

2.1	 Modularity: Making the input like the output 17
2.2	 Endowment gift 21
2.3	 Rabbits 25

The goals of this chapter are:

•	 to illustrate modularity and to describe systems in a modular way;

•	 to translate problems from their representation as a verbal descrip­
tion into their representation as discrete-time mathematics (differ­
ence equations); and

•	 to start investigating the simplest second-order system, the second-
simplest module for analyzing and designing systems.

The themes of this chapter are modularity and the representation of ver­
bal descriptions as discrete-time mathematics. We illustrate these themes
with two examples, money in a hypothetical MIT endowment fund and
rabbits reproducing in a pen, setting up difference equations to represent
them. The rabbit example, which introduces a new module for building
and analyzing systems, is a frequent visitor to these chapters. In this chap­
ter we begin to study how that module behaves. Before introducing the
examples, we illustrate what modularity is and why it is useful.

2.1 Modularity: Making the input like the output

A common but alas non-modular way to formulate difference and differ­
ential equations uses boundary conditions. An example from population

18 2.1 Modularity: Making the input like the output

growth illustrates this formulation and how to improve it by making it
modular. The example is the population of the United States. The US pop­
ulation grows at an annual rate of roughly 1%, according to the World Fact-
Book [2], and the US population is roughly 300 million in 2007. What will
be the US population be in 2077 if the growth rate remains constant at 1%?

Pause to try 1. What is the population equation and boundary con­
dition representing this information?

The difference equation for the population in year n is

p[n] = (1 + r)p[n − 1] (population equation),

where r = 0.01 is the annual growth rate. The boundary condition is

p[2007] = 3 × 108 (boundary condition).

To find the population in 2077, solve this difference equation with bound­
ary condition to find p[2077].

Exercise 1. What is p[2077]? How could you have quickly ap­
proximated the answer?

You might wonder why, since no terms are subtracted, the population
equation is called a difference equation. The reason is by analogy with
differential equations, which tell you how to find f(t) from f(t − Δt), with
Δt going to 0. Since the discrete-time population equation tells us how to
find f[n] from f[n − 1], it is called a difference equation and its solution is
the subject of the calculus of finite differences. When the goal – here, the
population – appears on the input side, the difference equation is also a
recurrence relation. What recurrence has to do with it is the topic of an
upcoming chapter; for now take it as pervasive jargon.

The mathematical formulation as a recurrence relation with boundary con­
dition, while sufficient for finding p[2077], is messy: The boundary condi­
tion is a different kind of object from the solution to a recurrence. This
objection to clashing categories may seem philosophical – in the colloquial

�

19 2 Difference equations and modularity

meaning of philosophical as irrelevant – but answering it helps us to un­
derstand and design systems. Here the system is the United States. The
input to the system is one number, the initial population p[2007]; however,
the output is a sequence of populations p[2008], p[2009], In this for­
mulation, the system’s output cannot become the input to another system.
Therefore we cannot design large systems by combining small, easy-to­
understand systems. Nor we can we analyze large, hard-to-understand
systems by breaking them into small systems.

Instead, we would like a modular formulation in which the input is the
same kind of object as the output. Here is the US-population question
reformulated along those lines: If x[n] people immigrate into the United states
in year n, and the US population grows at 1% annually, what is the population in
year n? The input signal is the number of immigrants versus time, so it is
a sequence like the output signal. Including the effect of immigration, the
recurrence is

p[n] = (1 + r)p[n − 1] + x[n] . ���� � �� � ����
output reproduction immigration

The boundary condition is no longer separate from the equation! Instead
it is part of the input signal. This modular formulation is not only elegant;
it is also more general than is the formulation with boundary conditions,
for we can recast the original question into this framework. The recasting
involves finding an input signal – here the immigration versus time – that
reproduces the effect of the boundary condition p[2007] = 3 × 108 .

Pause to try 2. What input signal reproduces the effect of the
boundary condition?

The boundary condition can be reproduced with this immigration sched­
ule (the input signal):

3 × 108 if n = 2007;x[n] =
0 otherwise.

This model imagines an empty United States into which 300 million people
arrive in the year 2007. The people grow (in numbers!) at an annual rate

�

20 2.1 Modularity: Making the input like the output

of 1%, and we want to know p[2077], the output signal (the population) in
the year 2077.

The general formulation with an arbitrary input signal is harder to solve
directly than is the familiar formulation using boundary conditions, which
can be solved by tricks and guesses. For our input signal, the output signal
is

3 · 108 × 1.01n−2007 for n � 2007;p[n] =
0 otherwise.

Exercise 2. Check that this output signal satisfies the boundary
condition and the population equation.

In later chapters you learn how to solve the formulation with an arbi­
trary input signal. Here we emphasize not the method of solution but the
modular formulation where a system turns one signal into another signal.
This modular description using signals and systems helps analyze com­
plex problems and build complex systems.

To see how it helps, first imagine a world with two countries: Ireland and
the United States. Suppose that people emigrate from Ireland to the United
States, a reasonable model in the 1850’s. Suppose also that the Irish pop­
ulation has an intrinsic 10 annual decline due to famines and that another
10% of the population emigrate annually to the United States. Ireland and
the United States are two systems, with one system’s output (Irish emigra­
tion) feeding into the other system’s input (the United States’s immigra­
tion). The modular description helps when programming simulations. In­
deed, giant population-growth simulations are programmed in this object-
oriented way. Each system is an object that knows how it behaves – what
it outputs – when fed input signals. The user selects systems and spec­
ifies connections among them. Fluid-dynamics simulations use a similar
approach by dividing the fluid into zillions of volume elements. Each ele­
ment is a system, and energy, entropy, and momentum emigrate between
neighboring elements.

Our one- or two-component population systems are simpler than fluid-
dynamics simulations, the better to illustrate modularity. Using two ex­
amples, we next practice modular description and how to represent verbal
descriptions as mathematics.

2 Difference equations and modularity 21

2.2 Endowment gift

The first example for representing descriptions as mathematics involves a
hypothetical endowment gift to MIT. A donor gives �107 dollars to MIT
to support projects proposed and chosen by MIT undergraduates! MIT
would like to use this fund for a long time and draw �0.5 × 106 every
year for a so-called 5% drawdown. Assume that the money is placed in a
reliable account earning 4% interest compounded annually. How long can
MIT and its undergraduates draw on the fund before it dwindles to zero?

Never make a calculation until you know roughly what the answer will be! This
maxim is recommended by John Wheeler, a brilliant physicist whose most
famous student was MIT alum Richard Feynman [9]. We highly recom­
mend Wheeler’s maxim as a way to build intuition. So here are a few esti­
mation questions to get the mental juices flowing. Start with the broadest
distinction, whether a number is finite or infinite. This distinction suggests
the following question:

Pause to try 3. Will the fund last forever?

Alas, the fund will not last forever. In the first year, the drawdown is
slightly greater than the interest, so the endowment capital will dwindle
slightly. As a result, the next year’s interest will be smaller than the first
year’s interest. Since the drawdown stays the same at $500,000 annually
(which is 5% of the initial amount), the capital will dwindle still more in
later years, reducing the interest, leading to a greater reduction in interest,
leading to a greater reduction in capital. . . Eventually the fund evaporates.
Given that the lifetime is finite, roughly how long is it? Can your great-
grandchildren use it?

Pause to try 4. Will the fund last longer than or shorter than 100
years?

The figure of 100 years comes from the difference between the outflow
– the annual drawdown of 5% of the gift – and the inflow produced by
the interest rate of 4%. The difference between 5% and 4% annually is

22 2.2 Endowment gift

δ = 0.01/year. The dimensions of δ are inverse time, suggesting an en­
dowment lifetime of 1/δ, which is 100 years. Indeed, if every year were
like the first, the fund would last for 100 years. However, the inflow from
interest decreases as the capital decreases, so the gap between outflow and
inflow increases. Thus this 1/δ method, based on extrapolating the first
year’s change to every year, overestimates the lifetime.

Having warmed up with two estimates, let’s describe the system mathe­
matically and solve for the true lifetime. In doing so, we have to decide
what is the input signal, what is the output signal, and what is the system.
The system is the least tricky part: It is the bank account paying 4 interest.
The gift of $10 million is most likely part of the input signal.

Pause to try 5. Is the $500,000 annual drawdown part of the output
or the input signal?

The drawdown flows out of the account, and the account is the system,
so perhaps the drawdown is part of the output signal. No!! The output
signal is what the system does, which is to produce or at least to compute
a balance. The input signal is what you do to the system. Here, you move
money in or out of the system:

bank
account

money
in or out balance

The initial endowment is a one-time positive input signal, and the annual
drawdown is a recurring negative input signal. To find how long the en­
dowment lasts, find when the output signal crosses below zero. These
issues of representation are helpful to figure out before setting up mathe­
matics. Otherwise with great effort you create irrelevant equations, where­
upon no amount of computing power can help you.

Now let’s represent the description mathematically. First represent the
input signal. To minimize the large numbers and dollar signs, measure
money in units of $500,000. This choice makes the input signal dimension­
less:

X = 20, −1, −1, −1, −1, . . .

�

23 2 Difference equations and modularity

We use the notation that a capital letter represents the entire signal, while a
lowercase letter with an index represents one sample from the signal. For
example, P is the sequence of populations and p[n] is the population in
year n.

The output signal is

Y = 20, ?, ?, ?, . . .

Pause to try 6. Explain why y[0] = 20.

The problem is to fill in the question marks in the output signal and find
when it falls below zero. The difference equation describing the system is

y[n] = (1 + r)y[n − 1] + x[n],

where r is the annual interest rate (here, r = 0.04). This difference equation
is a first-order equation because any output sample y[n] depends on the
one preceding sample y[n − 1]. The system that the equation represents is
said to be a first-order system. It is the simplest module for building and
analyzing complex systems.

Exercise 3. Compare this equation to the one for estimating the
US population in 2077.

Now we have formulated the endowment problem as a signal processed
by a system to produce another signal – all hail modularity! – and rep­
resented this description mathematically. However, we do not yet know
how to solve the mathematics for an arbitrary input signal X. But here we
need to solve it only for the particular input signal

X = 20, −1, −1, −1, −1,

With that input signal, the recurrence becomes

y[n] = 	 1.04 · y[n − 1] − 1 n > 0;

20 n = 0.

The y[0] = 20 reflects that the donor seeds the account with 20 units of
money, which is the $10,000,000 endowment. The −1 in the recurrence

24 2.2 Endowment gift

reflects that we draw 1 unit every year. Without the −1 term, the solution
to the recurrence would be y[n] ∼ 1.04n, where the ∼ symbol means ‘except
for a constant’. The −1 means that simple exponential growth is not a
solution. However, −1 is a constant so it may contribute only a constant to
the solution. That reasoning is dubious but simple, so try it first. Using a
bit of courage, here is a guess for the form of the solution:

y[n] = A · 1.04n + B (guess),

where A and B are constants to be determined. Before finding A and B,
figure out the most important characteristic, their signs. So:

Pause to try 7. Assume that this form is correct. What are the signs
of A and B?

Since the endowment eventually vanishes, the variable term A ·1.04n must
make a negative contribution; so A < 0. Since the initial output y[0] is
positive, B must overcome the negative contribution from A; so B > 0.

Pause to try 8. Find A and B.

Solving for two unknowns A and B requires two equations. Each equation
will probably come from one condition. So match the guess to the known
balances at two times. The times (values of n) that involve the least calcu­
lation are the extreme cases n = 0 and n = 1. Matching the guess to the
behavior at n = 0 gives the first equation:

20 = A + B (n = 0 condition).

To match the guess to the behavior at n = 1, first find y[1]. At n = 1,
which is one year after the gift, 0.8 units of interest arrive from 4% of 20,
and 1 unit leaves as the first drawdown. So

y[1] = 20 + 0.8 − 1 = 19.8.

Matching this value to the guess gives the second equation:

19.8 = 1.04A + B (n = 1 condition).

25 2 Difference equations and modularity

Both conditions are satisfied when A = −5 and B = 25. As predicted,
A < 0 and B > 0. With that solution the guess becomes

y[n] = 25 − 5 × 1.04n.

This solution has a strange behavior. After the balance drops below zero,
the 1.04n grows ever more rapidly so the balance becomes negative ever
faster.

Exercise 4.	 Does that behavior of becoming negative more and
more rapidly indicate an incorrect solution to the
recurrence relation, or an incomplete mathematical
translation of what happens in reality?

Exercise 5. The guess, with the given values for A and B, works
for n = 0 and n = 1. (How do you know?) Show
that it is also correct for n > 1.

Now we can answer the original question: When does y[n] fall to zero?
nAnswer: When 1.04 > 5, which happens at n = 41.035 So MIT can

draw on the fund in years 1, 2, 3, . . . , 41, leaving loose change in the ac­
count for a large graduation party. The exact calculation is consistent with
the argument that the lifetime be less than 100 years.

Exercise 6. How much loose change remains after MIT draws
its last payment? Convert to real money!

2.3 Rabbits

The second system to represent mathematically is the fecundity of rabbits.
The Encyclopedia Britannica (1981 edition) states this population-growth
problem as follows [6]:

26 2.3 Rabbits

A certain man put a pair of rabbits in a place surrounded on all sides by a wall.
How many pairs of rabbits can be produced from that pair in a year if it is sup­
posed that every month each pair begs a new pair which from the second month
on becomes productive?

That description is an English representation of the original Latin. We first
represent the verbal description mathematically and then play with the
equations to understand how the system behaves. It is the simplest system
beyond the first-order systems like the endowment, so it is an important
module for building and analyzing complex systems.

2.3.1 From words to recurrence

Before representing the system mathematically, we describe it modularly
using signals and systems by finding a system, an input signal, and an
output signal. It is usually easiest to begin by looking for the system since
it is the active element. The phrase ‘surrounding on all sides by a wall’
indicates a candidate for a system. The system is the inside of the wall,
which is where the rabbits reproduce, together with the rules under which
rabbits reproduce.

Pause to try 9. What is the input signal?

An input to the system is placing rabbits into it or taking them from it.
The input signal is the number of pairs that enter the system at month n,
where the signal would be negative if rabbits emigrate from the system to
seek out tastier grass or other rabbit friends.

Pause to try 10. What is the output signal?

Some pairs are placed into the system as children (the immigrants); other
pairs are born in the system (the native born). The sum of these kinds of
pairs is the output signal.

To describe the system mathematically, decompose it by type of rabbit:

1. children, who cannot reproduce but become adults in one month; and

2. adults, who reproduce that month and thereafter.

27 2 Difference equations and modularity

Let c[n] be the number of child pairs at month n and a[n] be the number
of adult pairs at month n. These intermediate signals combine to make the
output signal:

f[n] = a[n] + c[n] (output signal).

Pause to try 11. What equation contains the rule that children be­
come adults in one month?

Because children become adults in one month, and adults do not die, the
pool of adults grows by the number of child pairs in the previous month:

a[n] = a[n − 1] + c[n − 1] (growing-up equation).

The two terms on the right-hand side represent the two ways to be an
adult:

1. You were an adult last month (a[n − 1]), or

2. you were a child last month (c[n − 1]) and grew up.

The next equation says that all adults, and only adults, reproduce to make
new children:

c[n] = a[n − 1].

However, this equation is not complete because immigration also con­
tributes child pairs. The number of immigrant pairs at month n is the
input signal x[n]. So the full story is:

c[n] = a[n − 1] + x[n] (child equation)

Our goal is a recurrence for f[n], the total number of pairs. So we eliminate
the number of adult pairs a[n] and the number of child pairs c[n] in favor
of f[n]. Do it in two steps. First, use the growing-up equation to replace
a[n − 1] in the child equation with a[n − 2] + c[n − 2]. That substitution
gives

c[n] = a[n − 2] + c[n − 2] + x[n].

28 2.3 Rabbits

Since f[n] = c[n] + a[n], we can turn the left side into f[n] by adding a[n].
The growing-up equation says that a[n] is also a[n − 1] + c[n − 1], so add
those terms to the right side and pray for simplification. The result is

c[n] + a[n] = a[n − 2] + c[n − 2] +x[n] + a[n − 1] + c[n − 1] . � �� � � �� � � �� �
f[n] f[n−2] f[n−1]

The left side is f[n]. The right side contains a[n − 2] + c[n − 2], which is
f[n − 2]; and a[n − 1] + c[n − 1], which is f[n − 1]. So the sum of equations
simplifies to

f[n] = f[n − 1] + f[n − 2] + x[n].

The Latin problem description is from Fibonacci’s Liber Abaci [10], pub­
lished in 1202, and this equation is the famous Fibonacci recurrence but
with an input signal x[n] instead of boundary conditions.

This mathematical representation clarifies one point that is not obvious in
the verbal representation: The number of pairs of rabbits at month n de­
pends on the number in months n−1 and n−2. Because of this dependence
on two preceding samples, this difference equation is a second-order dif­
ference equation. Since all the coefficients are unity, it is the simplest equa­
tion of that category, and ideal as a second-order system to understand
thoroughly. To build that understanding, we play with the system and see
how it responds.

2.3.2 Trying the recurrence

To play with the system described by Fibonacci, we need to represent Fi­
bonacci’s boundary condition that one pair of child rabbits enter the walls
only in month 0. The corresponding input signal is X = 1, 0, 0, 0, Us­
ing that X, known as an impulse or a unit sample, the recurrence produces
(leaving out terms that are zero):

f[0] = x[0] = 1,

f[1] = f[0] = 1,

f[2] = f[0] + f[1] = 2,

f[3] = f[1] + f[2] = 3,

. . .

2 Difference equations and modularity 29

When you try a few more lines, you get the sequence: F = 1, 1, 2, 3, 5, 8, 13, 21, 34,
When you tire of hand calculation, ask a computer to continue. Here is
slow Python code to print f[0], f[1],. . .,f[19]:

def f(n):
if n < 2: return 1
return f(n-1) + f(n-2)

print [f(i) for i in range(20)]

Exercise 7. Write the corresponding Matlab or Octave code,
then rewrite the code in one of the languages –
Python, Matlab, or Octave – to be efficient.

Exercise 8. Write Matlab, Octave, or Python code to find f[n]
when the input signal is 1, 1, 1, What is f[17]?

2.3.3 Rate of growth

To solve the recurrence in closed form – meaning an explicit formula for
f[n] that does not depend on preceding samples – it is helpful to investigate
its approximate growth. Even without sophisticated techniques to find the
output signal, we can understand the growth in this case when the input
signal is the impulse.

Pause to try 12. When the input signal is the impulse, how fast does
f[n] grow? Is it polynomial, logarithmic, or expo­
nential?

From looking at the first few dozen values, it looks like the sequence grows
quickly. The growth is almost certainly too rapid to be logarithmic and,
almost as certain, too fast to be polynomial unless it is a high-degree poly­
nomial. Exponential growth is the most likely candidate, meaning that an
approximation for f[n] is

30 2.3 Rabbits

f[n] ∼ zn

where z is a constant. To estimate z, play with the recurrence when n > 0,
which is when the input signal is zero. The f[n] are all positive and, since
f[n] = f[n − 1] + f[n − 2] when n > 0, the samples are increasing: f[n] >
f[n − 1]. This bound turns f[n] = f[n − 1] + f[n − 2] into the inequality

f[n] < f[n − 1] + f[n − 1].

So f[n] < 2f[n − 1] or f[n]/f[n − 1] < 2; therefore the upper bound on z
is z < 2. This bound has a counterpart lower bound obtained by replacing
f[n − 1] by f[n − 2] in the Fibonacci recurrence. That substitution turns
f[n] = f[n − 1] + f[n − 2] into

f[n] > f[n − 2] + f[n − 2].

The right side is 2f[n − 2] so f[n] > 2f[n − 2]. This bound leads to a lower √
bound: z2 > 2 or z > 2. The range of possible z is then

√
2 < z < 2.

Let’s check the bounds by experiment. Here is the sequence of ratios f[n]/f[n−
1] for n = 1, 2, 3, . . .:

1.0, 2.0, 1.5, 1.666 . . . , 1.6, 1.625, 1.615 . . . , 1.619 . . . , 1.617 . . .

The ratios seem to oscillate around 1.618, which lies between the predicted √
bounds 2 and 2. In later chapters, using new mathematical representa­
tions, you learn how to find the closed from for f[n]. We have walked two
steps in that direction by representing the system mathematically and by
investigating how f[n] grows.

Exercise 9. Use a more refined argument to improve the upper

bound to z <
√

3.

Exercise 10. Does the number 1.618 look familiar?

2 Difference equations and modularity 31

Exercise 11. [Hard!] Consider the same system but with one rab­
bit pair emigrating into the system every month,
not only in month 0. Compare the growth with
Fibonacci’s problem, where one pair emigrated in
month 0 only. Is it now faster than exponential? If
yes, how fast is it? If no, does the order of growth
change from z ≈ 1.618?

MIT OpenCourseWare
http://ocw.mit.edu

6.003 Signals and Systems
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

