
MIT OpenCourseWare
http://ocw.mit.edu

6.004 Computation Structures
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.004 Computation Structures
Spring 2009

Quiz #3: April 10, 2009

Name
Solutions

Athena login name Score
Avg: 20.1

NOTE: Reference material and scratch copies of code appear on the backs of quiz pages.

Problem 1 (5 points): Quickies and Trickies

(A) (2 points) A student tries to optimize his Beta assembly program by replacing a line
containing

ADDC(R0, 3*4+5, R1)
by

ADDC(R0, 17, R1)
Is the resulting binary program smaller? Does it run faster?

(circle one) Binary program is SMALLER? yes … no

no …(circle one) FASTER? yes

(B) Which of the following best conveys Church’s thesis?
C1: Every integer function can be computed by some Turing machine.
C2: Every computable function can be computed by some Turing machine.
C3: No Turing machine can solve the halting problem.
C4: There exists a single Turing machine that can compute every computable function.

(circle one) Best conveys Church’s thesis: C1 … C2 … C3 … C4

(C) What value will be found in the low 16 bits of the BEQ instruction resulting from the
following assembly language snippet?

. = 0x100

 BEQ(R31, target, R31)

target: ADDC(R31, 0, R31)

0x000016-bit offset portion of above BEQ instruction: ____________________

(D) Can every SUBC instruction be replaced by an equivalent ADDC instruction with the
constant negated? If so, answer “YES”; if not, give an example of a SUBC
instruction that can’t be replaced by an ADDC.

SUBC(…) instruction, or “YES”: _______________________________________ SUBC(Ra, 0x8000, Rc)
(Ra can be any of R0–R31;
Rc can be any of R0–R30.)

6.004 Spring 2009 - 1 of 5 - Quiz #3

Problem 2. (13 points): Parentheses Galore

The wfps procedure determines whether a string of left and right parentheses is well balanced,
much as your Turing machine of Lab 4 did. Below is the code for the wfps (“well-formed paren
string”) procedure in C, as well as its translation to Beta assembly code. This code is reproduced
on the backs of the following two pages for your use and/or annotation.

int STR[100];

int wfps(int i,

int n)

{ int c = STR[i];

int new_n;

if (c == 0)

return (n == 0);

else if (c == 1)

new_n = n+1;

else {

if (n == 0) return 0; // too many RPARENS!

xxxxx; } // MYSTERY CODE!

 return wfps(i+1, new_n); // and recurse.

}

wfps expects to find a string of parentheses in the integer array stored at STR. The
string is encoded as a series of 32-bit integers having values of

1 to indicate a left paren,

2 to indicate a right paren, or

0 to indicate the end of the string.

These integers are stored in consecutive 32-bit locations starting at the address
STR.

wfps is called with two arguments:
1.	 The first, i, is the index of the start of the part of STR that this call of

wfps should examine. Note that indexes start at 0 in C. For example, if i
is 0, then wfps should examine the entire string in STR (starting at the
first character, or STR[0]). If i is 4, then wfps should ignore the first
four characters and start examining STR starting at the fifth character (the
character at STR[4]).

2.	 The second argument, n, is zero in the original call; however, it may be
nonzero in recursive calls.

wfps returns 1 if the part of STR being examined represents a string of balanced
parentheses if n additional left parentheses are prepended to its left, and returns 0
otherwise.

Note that the compiler may use some simple optimizations to simplify the
assembly-language version of the code, while preserving equivalent behavior.

The C code is incomplete; the missing expression is shown as xxxx.

// string of parens

// current index in STR

// LPARENs to balance

// next character

// next value of n

// if end of string,

// return 1 iff n == 0

// on LEFT PAREN,

// increment n

// else must be RPAREN

STR: 	 . = .+4*100

wfps: PUSH(LP)

PUSH(BP)

MOVE(SP, BP)

ALLOCATE(1)

PUSH(R1)

 LD(BP, -12, R0)

MULC(R0, 4, R0)

LD(R0, STR, R1)

ST(R1, 0, BP)

BNE(R1, more)

 LD(BP, -16, R0)

CMPEQC(R0, 0, R0)

rtn: 	 POP(R1)

MOVE(BP, SP)

POP(BP)

POP(LP)

JMP(LP)

more: CMPEQC(R1, 1, R0)

BF(R0, rpar)

LD(BP, -16, R0)

ADDC(R0, 1, R0)

BR(par)

rpar: LD(BP, -16, R0)

BEQ(R0, rtn)

ADDC(R0, -1, R0)

par: 	 PUSH(R0)

LD(BP, -12, R0)

ADDC(R0, 1, R0)

PUSH(R0)

BR(wfps, LP)

DEALLOCATE(2)

BR(rtn)

6.004 Spring 2009 - 2 of 5 -	 Quiz #3

Problem 2 continued:

(A) (3 points) In the space below, fill in the binary value of the instruction stored at the
location tagged ‘more:’ in the above assembly-language program.

1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

(fill in missing 1s and 0s for instruction at more:)

(B) (1 point) Is the value of the variable c from the C program stored in the local stack
frame? If so, give its (signed) offset from BP; else write “NO”.

Stack offset of variable c, or “NO”: _________________ BP+0

(C) (1 point) Is the value of the variable new_n from the C program stored in the local
stack frame? If so, give its (signed) offset from BP; else write “NO”.

Stack offset of variable new_n, or “NO”: _________________ NO or BP+8

(D) (2 points) What is the missing C source code represented by xxxxx in the given C
program?

new_n = n - 1

(give missing C code shown as xxxxx)

The original intention of this problem was that the variable
new_n was not stored on the local stack frame (unlike the
variable c, which did have a space specifically allocated on
the stack for it). However, it is true that when wfps makes
a recursive call, it pushes the value of new_n onto the
stack, so we ended up also accepting BP+8 as an answer.

6.004 Spring 2009 - 3 of 5 - Quiz #3

Problem 2 continued again:

The procedure wfps is called from an external procedure and its execution is interrupted during a
recursive call to wfps, just prior to the execution of the instruction labeled ‘rtn:’. The contents
of a region of memory are shown to below on the left. At this point, SP contains 0x1D8, and BP
contains 0x1D0.

NOTE: All addresses and data values are shown in hexadecimal.

188: 7
(E) (1 point) What are the arguments to the most recent active call to wfps?

18C: 4A8 Most recent arguments (HEX): i=________; n=________ 2 0
190: 0
194:
198:

0
458

(F) (1 point) What are the arguments to the original call to wfps?

19C: D4 Original arguments (HEX): i=________; n=________ 0 0
1A0: 1
1A4:
1A8:
1AC:

D8
1
1

(G) (1 point) What value is in R0 at this point?

Contents of R0 (HEX): 0 ________

1B0: 3B8
1B4: 1A0 (H) (1 point) How many parens (left and right) are in the string stored at STR

1B8:
1BC:

2
1

(starting at index 0)? Give a number, or “CAN’T TELL” if the number
can’t be determined from the given information.

1C0: 0 Length of string, or “CAN’T TELL”: CAN’T TELL _______________

1C4: 2
1C8:
1CC:

3B8
1B8

(I) (1 point) What is the hex address of the instruction tagged par:?

BP->1D0: 2 Address of par (HEX): ________ 39C
1D4: 2

SP->1D8: 0 (J) (1 point) What is the hex address of the BR instruction that called wfps
originally?

Address of original call (HEX): ________454

6.004 Spring 2009 - 4 of 5 - Quiz #3

Problem 3 (7 Points): Beta control signals

Following is an incomplete table listing control signals for several instructions on an unpipelined
Beta. You may wish to consult the Beta diagram on the back of the previous page and the
instruction set summary on the back of the first page.

The operations listed include two existing instructions and two proposed additions to the Beta
instruction set:

LDX(Ra, Rb, Rc) // Load, double indexed
EA ← Reg[Ra] + Reg[Rb]
Reg[Rc] ← Mem[EA]
PC ← PC + 4

MVZC(Ra, literal, Rc) // Move constant if zero
If Reg[Ra] == 0 then Reg[Rc] ← SEXT(literal)
PC ← PC + 4

In the following table, φ represents a “don’t care” or unspecified value; Z is the value (0 or 1)
output by the 32-input NOR in the unpipelined Beta diagram. Your job is to complete the table by
filling in each unshaded entry. In each case, enter an opcode, a value, an expression, or φ as
appropriate.

Instr ALUFN WERF BSEL WDSEL WR RA2SEL PCSEL ASEL WASEL

JMP φ 1 φ 0 0 φ 2 φ 0

BEQ φ 1 φ 0 0 φ Z φ 0

LDX A+B 1 0 2 0 0 0 0 0

MVZC A+B Z 1 1 0 φ 0 0 0
(Complete the above table)

END OF QUIZ!
(phew!)

6.004 Spring 2009 - 5 of 5 - Quiz #3

