
MIT OpenCourseWare
http://ocw.mit.edu

6.004 Computation Structures
Spring 2009

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

 M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y
DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

6.004 Computation Structures
Lab #2

Your mission this week is to design and test a CMOS circuit that performs addition on two
unsigned 4-bit numbers, producing a 5-bit result:

A0
A1

A2
A3

B0
B1

B2
B3

ADD

S0
S1

S2
S3
S4

When you’ve completed and tested your design, you can ask JSim to send your circuit to the on-
line assignment system using the process described at the end of Lab #1. The checkoff file for
Lab #2 (lab2checkoff.jsim) checks that your circuit has the right functionality; the on-line system
will give you 5 points for checking off your lab using this file. (You’ll receive your points after
completing the on-line questions and a checkoff meeting with a TA.)

Note: Our ability to provide automated checkoffs is predicated on trusting that you’ll use
the checkoff and library files as given. Since these files are included in your submission, we
will be checking to see if these files have been used as intended. Submittals that include
modified checkoff or library files will be regarded as a serious breach of our trust and will
be dealt with accordingly.

Some suggestions on how to proceed:

Å Let’s start with a simple ripple-carry adder based on the full-adder module discussed in
lecture. Later we’ll discuss higher performance adder architectures you can use in the
implementation of the Beta (the computer central processing unit we’ll be designing in later labs).

The full adder module has 3 inputs (A, B and Ci) and 2 outputs (S and Co). The logic equations
and truth table for S and Co are shown below.

S = A ⊕ B ⊕ Cin Co = A ⋅ B + A ⋅ Cin + B ⋅ Cin

6.004 Computation Structures - 1 - Lab #2

Typically S is implemented using two cascaded 2-input XOR gates. One can use three 2-input
NANDs and one 3-input NAND to implement Co (remember that by Demorgan’s Law two
cascaded NANDs is logically equivalent to a cascade of AND/OR).

The module performs the addition of two one-bit inputs (A and B) incorporating the carry in from
the previous stage (Ci). The result appears on the S output and a carry (Co) is generated for the
next stage. A possible schematic for the 4-bit adder is shown below:

A3 B3 A2 B2 A1 B1 A0 B0

FAFAFAFA “0”

S4 S3 S2 S1 S0

Å Since we’re using individual gates to implement the logic, a good place to start is to build
your own gate library (e.g., inverter, 2-input NAND, 2-input NOR, 2-input XOR), test them
individually, and then use them to implement your design. It’s much easier to debug your circuit
module-by-module rather than as one big lump. XOR/XNOR can be challenging gates to design;
here’s one suggestion for how they might be implemented:

6.004 Computation Structures - 2 - Lab #2

Å You can use voltage sources with either a pulse or piece-wise linear waveforms to generate
test signals for your circuit (see Lab #1 for details). Another source of test waveforms is the file
“/mit/6.004/jsim/8clocks.jsim” which can be included in your netlist. It provides eight different
square waves (50% duty cycle) with different periods:

clk1 period = 10ns

clk2 period = 20ns

clk3 period = 40ns

clk4 period = 80ns

clk5 period = 160ns

clk6 period = 320ns

clk7 period = 640ns

clk8 period = 1280ns

For example, to completely test all possible input combinations for a 2-input gate, you could
connect clk1 and clk2 to the two inputs and simulate for 20ns.

Å Interpreting analog signal levels as logic values can be tedious. JSim will do it for you
automatically if you ask to plot “L(a)” instead of just “a”. The logic-high and logic-thresholds
are determined by the “vih” and “vil” options:

.options vih=2.6 vil=0.6

Initial values are specified in “/mit/6.004/jsim/nominal.jsim”, but you can respecify them in your
own netlist. Voltages between vil and vih are displayed as a filled-in rectangle to indicate that the
logic value cannot be determined. For example:

A

L(A)

vih
vil

6.004 Computation Structures - 3 - Lab #2

You can also ask for the values of a set of signals to be displayed as a bus, e.g.,
“L(a3,a2,a1,a0)”. The signals should be listed most-significant bit first. A bus waveform is
displayed as a filled-rectangle if any of the component signals has an invalid logic level or as a
hexadecimal value otherwise. In the following plot the four signals a3, a2, a1 and a0 are
interpreted as a 4-bit integer where the high-order bit (a3) is making a 1→0 transition. The filled-
in rectangle represents the period of time during which a3 transitions from VIH to VIL.

L(a3,a2,a1,a0) 0xF 0x7

Å Here’s a list of design tasks you might use to organize your approach to the lab:

1.	 Draw a gate-level schematic for the full-adder module. XOR gates can be used to
implement the S output; two levels of NAND gates are handy for implementing Co as a
sum of products.

2.	 Create a MOSFET circuit for each of the logic gates you used in step 1.

3.	 Enter .subckt definitions in your netlist for each of the logic gates. Use Jsim to test each
logic gate with all possible combinations of inputs. Debugging your gate designs one-by-
one will be much easier than trying to debug them as part of the adder circuit. Here’s a
sample netlist for testing a 2-input NAND gate called nand2:

.include "/mit/6.004/jsim/nominal.jsim"

 .include "/mit/6.004/jsim/8clocks.jsim"

.subckt nand2 a b z

… internals of nand2 circuit here

 .ends

Xtest clk1 clk2 z nand2

 .tran 20ns

 .plot clk1

 .plot clk2

 .plot z

4.	 Enter a .subckt definition for the full-adder, building it out of the gates you designed and
tested above. Use Jsim to test your design with all 8 possible combinations of the three
inputs. At this point you probably want to switch to using “Fast Transient Analysis” do to
the simulations as it is much faster than “Device-level Simulation”.

5.	 Enter the netlist for the 4-bit adder and test the circuit using input waveforms supplied by
lab2checkoff.jsim. Note that the checkoff circuitry expects your 4-bit adder to have
exactly the terminals shown below – the inside circuitry is up to you, but the “.subckt
ADDER4…” line in your netlist should match exactly the one shown below.

.include "/mit/6.004/jsim/nominal.jsim"

 .include "/mit/6.004/jsim/lab2checkoff.jsim"

… subckt definitions of your logic gates

.subckt FA a b ci s co
… full-adder internals here

6.004 Computation Structures - 4 -	 Lab #2

 .ends

.subckt ADDER4 a3 a2 a1 a0 b3 b2 b1 b0 s4 s3 s2 s1 s0
* remember the node named "0" is the ground node
* nodes c0 through c3 are internal to the ADDER module

Xbit0 a0 b0 0 s0 c0 FA

Xbit1 a1 b1 c0 s1 c1 FA

Xbit2 a2 b2 c1 s2 c2 FA

Xbit3 a3 b3 c2 s3 s4 FA

.ends

lab2checkoff.jsim contains the necessary circuitry to generate the appropriate input
waveforms to test your adder. It includes a .tran statement to run the simulation for the
appropriate length of time and a few .plot statements showing the input and output
waveforms for your circuit.

When debugging your circuits, you can plot additional waveforms by adding .plot
statements to the end of your netlist. For example, to plot the carry-out signal from the
first full adder, you could say

.plot Xtest.c0

where Xtest is the name lab2checkoff.jsim gave to the ADDER4 device it created and c0
is the name of the internal node that connects the carry-out of the low-order FA to the
carry-in of the next FA.

6.004 Computation Structures - 5 - Lab #2

