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   M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y 

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE 


6.004 Computation Structures 
Lab #3 

In this laboratory exercise, we’ll build the arithmetic and logic unit (ALU) for the Beta processor. 
The ALU has two 32-bit inputs (which we’ll call “A” and “B”) and produces one 32-bit output.  
We’ll start by designing each piece of the ALU as a separate circuit, each producing its own 32-
bit output. Then we’ll combine these outputs into a single ALU result. 

When designing circuitry there are three separate factors that can be optimized: 

(1) design for maximum performance (minimum latency) 

(2) design for minimum cost (minimum area) 

(3) design for the best cost/performance ratio (minimize area*latency) 

Happily it’s often possible to do all three at once but in some portions of the circuit some sort of 
design tradeoff will need to be made.  When designing your circuitry you should choose which of 
these three factors is most important to you and optimize your design accordingly. 

A functional ALU design will earn six points. Four additional points can be earned if you 
implement the optional multiplier unit – see the section labeled “Optional Design Problem: 
Implementing Multiply” for details. 

Standard Cell Library 

The building blocks for our design will be a family of logic gates that are part of a standard cell 
library. The available combinational gates are listed in the table below along with information 
about their timing, loading and size.  You can access the library by starting your netlist with the 
following include statements: 

.include "/mit/6.004/jsim/nominal.jsim" 


.include "/mit/6.004/jsim/stdcell.jsim" 


Everyone should use the provided cells in creating their design.  The timings have been taken 
from a 0.18 micron CMOS process measured at room temperature. 
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Netlist Function tCD 
(ns) 

tPD 
(ns) 

tR 
(ns/pf) 

tF 
(ns/pf) 

load 
(pf) 

size 
(μ2) 

Xid z constant0 = 0Z — — — — — 0 
Xid z constant1 = 1Z — — — — — 0 
Xid a z inverter .005 .02 2.3 1.2 .007 10 
Xid a z inverter_2 .009 .02 1.1 .6 .013 13 
Xid a z inverter_4 AZ = .009 .02 .56 .3 .027 20 
Xid a z inverter_8 .02 .11 .28 .15 .009 56 
Xid a z buffer .02 .08 2.2 1.2 .003 13 
Xid a z buffer_2 AZ = .02 .07 1.1 .6 .005 17 
Xid a z buffer_4 .02 .07 .56 .3 .01 30 
Xid a z buffer-8 .02 .07 .28 .15 .02 43 
Xid e a z tristate .03 .15 2.3 1.3 .004 23 
Xid e a z tristate_2 AZ = when e=1 .03 .13 1.1 .6 .006 30 
Xid e a z tristate_4 else Z not driven .02 .12 .6 .3 .011 40 
Xid e a z tristate_8 .02 .11 .3 .17 .02 56 
Xid a b z and2 BAZ ⋅= .03 .12 4.5 2.3 .002 13 
Xid a b c z and3 B CAZ ⋅⋅= .03 .15 4.5 2.6 .002 17 
Xid a b c d z and4 DB CAZ ⋅⋅⋅= .03 .16 4.5 2.5 .002 20 
Xid a b z nand2 BAZ ⋅= .01 .03 4.5 2.8 .004 10 
Xid a b c z nand3 B CAZ ⋅⋅= .01 .05 4.2 3.0 .005 13 
Xid a b c d z nand4 DB CAZ ⋅⋅⋅= .01 .07 4.4 3.5 .005 17 
Xid a b z or2 BAZ += .03 .15 4.5 2.5 .002 13 
Xid a b c z or3 CBAZ ++= .04 .21 4.5 2.5 .003 17 
Xid a b c d z or4 DCBAZ +++= .06 .29 4.5 2.6 .003 20 
Xid a b z nor2 BAZ += .01 .05 6.7 2.4 .004 10 
Xid a b c z nor3 CBAZ ++= .02 .08 8.5 2.4 .005 13 
Xid a b c d z nor4 DCBAZ +++= .02 .12 9.5 2.4 .005 20 
Xid a b z xor2 BAZ ⊕= .03 .14 4.5 2.5 .006 27 
Xid a b z xnor2 BAZ ⊕= .03 .14 4.5 2.5 .006 27 
Xid a1 a2 b z aoi21 BAAZ +⋅= 2)( 1 .02 .07 6.8 2.7 .005 13 
Xid a1 a2 b z oai21 BAAZ ⋅+= 2)( 1 .02 .07 6.7 2.7 .005 17 
Xid s d0 d1 z mux2 Z = D0 when S = 0 

Z = D1 when S = 1 
.02 .12 4.5 2.5 .005 27 

Xid s0 s1 d0 d1 d2 d3 z mux4 

(Note order of s0 and s1!) 

Z=D0 when S0=0, S1=0 
Z=D1 when S0=1, S1=0 
Z=D2 when S0=0, S1=1 
Z=D3 when S0=1, S1=1 

.04 .19 4.5 2.5 .006 66 

Xid d clk q dreg 
t = .15, t

hold
 = 0 

D→Q on CLK↑ .03 .19 4.3 2.5 .002 56 
setup
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Gate-level Simulation 

Since we’re designing at the gate level we can use a faster simulator that only knows about gates 
and logic values (instead of transistors and voltages).  You can run JSim’s gate-level simulator by 

in the toolbar. Note that your design can’t contain any mosfets, resistors, capacitors, 
etc.; this simulator only supports the gate primitives in the standard cell library. 
clicking 

Inputs are still specified in terms of voltages (to maintain netlist compatability with the other 
simulators) but the gate-level simulator converts voltages into one of three possible logic values 
using the VIL and VIH thresholds specified in nominal.jsim: 

0 logic low (voltages less than or equal to VIL threshold) 

1 logic high (voltages greater than or equal to VIH threshold) 

X unknown or undefined (voltages between the thresholds, or unknown voltages) 


A fourth value “Z” is used to represent the value of nodes that aren’t being driven by any gate 
output (e.g., the outputs of tristate drivers that aren’t enabled).  The following diagram shows 
how these values appear on the waveform display: 

0 1 X Z 

Connecting electrical nodes together using .connect 
JSim has a control statement that lets you connect two or more nodes together so that they behave 
as a single electrical node: 

.connect node1 node2 node3... 

The .connect statement is useful for connecting two terminals of a subcircuit or for connecting 
nodes directly to ground. For example, the following statement ties nodes cmp1, cmp2, ..., cmp31 
directly to the ground node (node "0"):  

.connect 0 cmp[31:1] 

Note that the .connect control statement in JSim works differently than many people expect. For 
example,  

.connect A[5:0] B[5:0] 

will connect all twelve nodes (A5, A4, ..., A0, B5, B4, ..., B0) together -- usually not what was 
intended. To connect two busses together, one could have entered  

.connect A5 B5 


.connect A4 B4 


... 


which is tedious to type. Or one can define a two-terminal device that uses .connect internally, 
and then use the usual iteration rules (see next section) to make many instances of the device with 
one "X" statement: 
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.subckt knex a b 


.connect a b 


.ends 

X1 A[5:0] B[5:0] knex 


Using iterators to create multiple gates with a single “X” statement 
JSim makes it easy to specify multiple gates with a single "X" statement. You can create multiple 
instances of a device by supplying some multiple of the number of nodes it expects, e.g., if a 
device has 3 terminals, supplying 9 nodes will create 3 instances of the device. To understand 
how nodes are matched up with terminals specified in the .subckt definition, imagine a device 
with P terminals. The sequence of nodes supplied as part of the "X" statement that instantiates the 
device are divided into P equal-size contiguous subsequences. The first node of each subsequence 
is used to wire up the first device, the second node of each subsequence is used for the second 
device, and so on until all the nodes have been used. For example:  

Xtest a[2:0] b[2:0] z[2:0] xor2 

is equivalent to 

Xtest#0 a2 b2 z2 xor2 

Xtest#1 a1 b1 z1 xor2 

Xtest#2 a0 b0 z0 xor2 


since xor2 has 3 terminals. There is also a handy way of duplicating a signal: specifying "foo#3" 
is equivalent to specifying "foo foo foo". For example, xor'ing a 4-bit bus with a control signal 
could be written as 

Xbusctl in[3:0] ctl#4 out[3:0] xor2 

which is equivalent to 

Xbusctl#0 in3 ctl out3 xor2 

Xbusctl#1 in2 ctl out2 xor2 

Xbusctl#2 in1 ctl out1 xor2 

Xbusctl#3 in0 ctl out0 xor2 


Using iterators and the “constant0” device from the standard cell library, here’s a better way of 
connecting cmp[31:1] to ground: 

Xgnd cmp[31:1] constant0 

Since the “constant0” has one terminal and we supply 31 nodes, 31 copies of the device will be 
made. 

ALU Design 

NOTE: the ALUFN signals used to control the operation of the ALU circuitry use an encoding 
chosen to make the design of the ALU circuitry as simple as possible.  This encoding is not the 
same as the one used to encode the 6-bit opcode field of Beta instructions.  In Lab 6, you’ll 
build some logic (actually a ROM) that will translate the opcode field of an instruction into the 
appropriate ALUFN control bits. 
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(A) Design an adder/subtractor unit that operates on 32-bit two’s complement inputs and 
generates a 32-bit output. It will be useful to generate three other output signals to be used 
by the comparison logic in part (B): “Z” which is true when the S outputs are all zero, “V” 
which is true when the addition operation overflows (i.e., the result is too large to be 
represented in 32 bits), and “N” which is true when the S is negative (i.e., S31 = 1). 
Overflow can never occur when the two operands to the addition have different signs; if 
the two operands have the same sign, then overflow can be detected if the sign of the 
result differs from the sign of the operands: 

V = XA 31 ⋅ XB 31 ⋅ S31 + XA31 ⋅ XB31 ⋅ S31 

Note that this equation uses XB31, which is the high-order bit of the B operand to the 
adder itself (i.e., after the XOR gate – see the schematic below). 

ALUFN0 will be set to 0 for an ADD (S = A + B) and 1 for a SUBTRACT (S = A – B); 
A[31:0] and B[31:0] are the 32-bit two’s complement input operands; S[31:0] is the 32-
bit result; z/v/n are the three condition code bits described above.  We’ll be using the 
“little-endian” bit numbering convention where bit 31 is the most-significant bit and bit 0 
is the least-significant bit. 

The following schematic is one suggestion for how to go about the design: 

32-bit add 

carry in x32 

A31…A0 

ALUFN0 

B31…B0 
S31…S0 

V 
N 

32 

32 
32 

32 

Z 

XB 

XA 

S 

The ALUFN0 input signal selects whether the operation is an ADD or SUBTRACT. To 
do a SUBTRACT, the circuit first computes the two’s complement negation of the “B” 
operand by inverting “B” and then adding one (which can be done by forcing the carry-in 
of the 32-bit add to be 1). Start by implementing the 32-bit add using a ripple-carry 
architecture (you’ll get to improve on this later on the lab).  You’ll have to construct the 
32-input NOR gate required to compute Z using a tree of smaller fan-in gates (the parts 
library only has gates with up to 4 inputs). 

We’ve created a test jig to test your adder. Your netlist should incorporate the following 
three .include statements 

.include "/mit/6.004/jsim/nominal.jsim" 

.include "/mit/6.004/jsim/stdcell.jsim" 

.include "/mit/6.004/jsim/lab3adder.jsim" 
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and the following subcircuit definition (you can of course define other subcircuits as 
well) 

.subckt adder32 ALUFN[0] A[31:0] B[31:0] s[31:0] z v n 
… your adder/subtractor circuit here … 
.ends 

To use the test jig, make sure your design file contains a definition for an “adder32” 
subcircuit as shown above. Then do a gate-level simulation; a waveform window 
showing the adder32 inputs and outputs should appear.  Next click the checkoff button 
(the green checkmark) in the toolbar.  JSim will check your circuit’s results against a list 
of expected values and report any discrepancies it finds.  Using this test jig file, nothing 
will be sent to the on-line server – it’s provided to help test your design as you go. 

The Beta instruction set includes three compare instructions (CMPEQ, CMPLT, CMPLE) that 
compare the “A” and “B” operands.  We can use the adder unit designed above to compute 
“A−B” and then look at the result (actually just the Z, V and N condition codes) to determine 
if A=B, A<B or A≤B. The compare instructions generate a 32-bit Boolean result, using “0” to 
represent false and “1” to represent true. 

(B) Design a 32-bit compare unit that generates one of two constants (“0” or “1”) depending 
on the ALUFN control signals (used to select the comparison to be performed) and the Z, 
V, and N outputs of the adder/subtractor unit.  Clearly the high order 31 bits of the output 
are always zero.  The least significant bit of the output is determined by the comparison 
being performed and the results of the subtraction carried out by the adder/subtractor: 

Comparison Equation for LSB ALUFN2 ALUFN1 
A = B LSB = Z 0 1 
A < B LSB = N ⊕ V 1 0 

A <= B LSB = Z + (N ⊕ V) 1 1 

ALUFN[2:1] are used to control the compare unit since we also need to control the 
adder/subtractor unit (i.e., ALUFN0 = 1 to force a subtract). 

Performance note: the Z, V and N inputs to this circuit can only be calculated by the 
adder/subtractor unit after the 32-bit add is complete.  This means they arrive quite late 
and then require further processing in this module, which in turn makes cmp0 show up 
very late in the game.  You can speed things up considerably by thinking about the 
relative timing of Z, V and N and then designing your logic to minimize delay paths 
involving late-arriving signals. 

We’ve created a test jig to test your compare unit. Your netlist should incorporate the 
following three .include statements 

.include "/mit/6.004/jsim/nominal.jsim" 


.include "/mit/6.004/jsim/stdcell.jsim" 


.include "/mit/6.004/jsim/lab3compare.jsim" 


and the following subcircuit definition 
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.subckt compare32 ALUFN[2:1] z v n cmp[31:0] 
… your compare circuit here … 
.ends 

(C) Design a 32-bit Boolean unit for the Beta’s logic operations. 	One implementation of a 
32-bit boolean unit uses a 32 copies of a 4-to-1 multiplexer where ALUFN0, ALUFN1, 
ALUFN2, and ALUFN3 encode the operation to be performed, and Ai and Bi are hooked 
to the select inputs. This implementation can produce any of the 16 2-input Boolean 
functions; we’ll only be using 4 of the possibilities. 

The following table shows the encodings for the ALUFN[3:0] control signals used by the 
test jig. If you choose a different implementation you should also include logic to 
convert the supplied control signals into signals appropriate for your design. 

Operation ALUFN[3:0]
 AND 1000 


OR 1110 

XOR 0110 

“A” 1010 


We’ve created a test jig to test your boolean unit. Your netlist should incorporate the 
following three .include statements 

.include "/mit/6.004/jsim/nominal.jsim" 


.include "/mit/6.004/jsim/stdcell.jsim" 


.include "/mit/6.004/jsim/lab3boolean.jsim" 


and the following subcircuit definition 

.subckt boole32 ALUFN[3:0] A[31:0] B[31:0] boole[31:0] 
… your boolean unit circuit here … 
.ends 

(D) Design a 32-bit shifter that implements SRA, SHR and SHL instructions.  	The “A” 
operand supplies the data to be shifted and the low-order 5 bits of the “B” operand are 
used as the shift count (i.e., from 0 to 31 bits of shift).  The desired operation will be 
encoded on ALUFN[1:0] as follows: 

Operation 	ALUFN[1:0] 
SHL (shift left) 	 00 
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SHR (shift right) 01 

SRA (shift right with sign extension) 11 


With this encoding, ALUFN0 is 0 for a left shift and 1 for a right shift and ALUFN1 
controls the sign extension logic on right shift.  For SHL and SHR, 0’s are shifted into 
the vacated bit positions. For SRA (“shift right arithmetic”), the vacated bit positions are 
all filled with A31, the sign bit of the original data so that the result will be the same as 
dividing the original data by the appropriate power of 2. 

The simplest implementation is to build two shifters—one for shifting left and one for 
shifting right—and then use a 2-way 32-bit multiplexer to select the appropriate answer 
as the unit’s output. It’s easy to build a shifter after noticing that a multi-bit shift can be 
accomplished by cascading shifts by various powers of 2. For example, a 13-bit shift can 
be implemented by a shift of 8, followed by a shift of 4, followed by a shift of 1. So the 
shifter is just a cascade of multiplexers each controlled by one bit of the shift count. The 
schematic below shows a possible implementation of the left shift logic; the right shift 
logic is similar with the slight added complication of having to shift in either “0” or 
“A31.” Another approach that adds latency but saves gates is to use the left shift logic 
for both left and right shifts, but for right shifts, reverse the bits of the “A” operand on the 
way in and reverse the bits of the output on the way out. 

A[31:0] 0 

1 
x32 

W[31:0] 
W[31:0] 

0 

1 
x32 X[31:0] 


A[15:0],GND#16
 W[23:0],GND#8 

B4B4 B3 

X[31:0] 0 

1 
x32 

Y[31:0] 
Y[31:0] 

0 

1 
x32 Z[31:0] 

X[27:0],GND#4 Y[29:0],GND#2 

B2 B1 

Z[31:0] 

Z[30:0],GND 

0 

1 
x32 SL[31:0] 

B0 

We’ve created a test jig to test your shift unit. Your netlist should incorporate the 
following three .include statements 

.include "/mit/6.004/jsim/nominal.jsim" 

.include "/mit/6.004/jsim/stdcell.jsim" 

.include "/mit/6.004/jsim/lab3shifter.jsim" 

and the following subcircuit definition 

.subckt shift32 ALUFN[1:0] A[31:0] B[4:0] shift[31:0] 
… your shifter circuit here … 
.ends 
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(E) 	 Combine the outputs of the adder, compare, boolean and shift units to produce a single 
ALU output. The simplest approach is to use a 4-way 32-bit multiplexer as shown in the 
schematic below: 

A[31:0] 

B[31:0] 


ALUFN0 


A[31:0] 

B[31:0] 


ALUFN[3:0] 

A[31:0] 

B[4:0] 


ALUFN[1:0]


Z 
V 
N 

ALUFN[2:1] 

ALUFN[5:4] 

Two additional control signals (ALUFN[5:4]) have been introduced to select which unit 
will supply the value for the ALU output.  The encodings for ALUFN[5:0] used by the test 
jig are shown in the following table: 

Z 
V 

N 
add 

boole 

shift 

cmp 

ALU[31:0] 

00 

01 

10 

11 

Operation ALUFN[5:0] hex 
ADD 000000 0x00 

SUB 000001 0x01 

AND 011000 0x18 

OR 011110 0x1E 

XOR 010110 0x16 

“A” (LDR) 011010 0x1A 

SHL 100000 0x20 

SHR 100001 0x21 

SRA 100011 0x23 

CMPEQ 110011 0x33 

CMPLT 110101 0x35 

CMPLE 110111 0x37 
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(F) 	 When you’ve completed your design, you can use lab3checkoff_6.jsim to test your 

circuit. Your netlist should incorporate the following three .include statements 


.include "/mit/6.004/jsim/nominal.jsim" 


.include "/mit/6.004/jsim/stdcell.jsim" 


.include "/mit/6.004/jsim/lab3checkoff_6.jsim" 


and the following subcircuit definition (you can of course define other subcircuits as 
well) 

.subckt alu ALUFN[5:0] A[31:0] B[31:0] alu[31:0] z v n 
… your ALU circuit here … 
.ends 

Note that the z, v, and n signals from the adder/subtractor unit are included in the 
terminal list for the alu subcircuit.  While these signals are not needed when using the 
ALU as part of the Beta, they are included here to make it easier for the test jig to 
pinpoint problems with your circuit. 

Before using lab3checkoff_6.jsim remember to comment out any test circuitry and .tran 
statements you may have added to your netlist while debugging your circuit.  Also 
remember to use JSim’s gate-level simulator (   in the toolbar) to simulate your circuit. 

If this test jig runs okay, it will offer to check-in your lab with the on-line server. 

Optional Design Problem: Implementing Multiply 

The goal of this design project is build a combinational multiplier that accepts 32-bit operands 
and produces a 32-bit result. Multiplying two 32-bit numbers produces a 64-bit product; the 
result we’re looking for is the low-order 32-bits of the 64-bit product. 

Your multiplier circuitry should be integrated into the ALU design you completed in the first part 
of this lab. We’ll use the following encoding for ALUFN[5:0] when requesting a multiply 
operation by the ALU. 

Operation ALUFN[5:0] hex 
MUL 000010 0x02 

Here’s a detailed bit-level description of how a 4-bit by 4-bit unsigned multiplication works.  
This diagram assumes we only want the low-order 4 bits of the 8-bit product. 

A3 A2 A1 A0 (multiplicand)
 * B3 B2 B1 B0 (multiplier)
 ---------------------------
A3*B0 A2*B0 A1*B0 A0*B0 (partial product)

 + A2*B1 A1*B1 A0*B1 0 
+ A1*B2 A0*B2 0 0 
+ A0*B3 0 0 0 
--------------------------

P3 P2 P1 P0 
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This diagram can be extended in a straightforward way to 32-bit by 32-bit multiplication.  Note 
that since we only want the low-order 32-bits of the result, you don’t need to include the circuitry 
that generates the rest of the 64-bit product. 

As you can see from the diagram above, forming the partial products is easy!  Multiplication of 
two bits can be implemented using an AND gate. The hard part is adding up all the partial 
products (there will be 32 partial products in your circuit).  One can use full adders (FAs) hooked 
up in a ripple-carry configuration to add each partial product to the accumulated sum of the 
previous partial products (see the diagram below).   The circuit closely follows the diagram above 
but omits an FA module if two of its inputs are “0”. 

The circuit above works with both unsigned operands and signed two’s complement 
operands. This may seem strange – don’t we have to worry about the most significant bit 
(MSB) of the operands? With unsigned operands the MSB has a weight of 2MSB 

(assuming the bits are numbered 0 to MSB) but with signed operands the MSB has a 
weight of –2MSB. Doesn’t our circuitry need to take that into account? 
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It does, but when we’re only saving the lower half of the product, the differences don’t 
appear. The multiplicand (A in the figure above) can be either unsigned or two’s 
complement, the FA circuits will perform correctly in either case.  When the multiplier 
(B in the figure above) is signed, we should subtract the final partial product instead of 
adding it. But subtraction is the same as adding the negative, and the negative of a two’s 
complement number can be computed by taking its complement and adding 1.  When we 
work this through we see that the low-order bit of the partial product is the same whether 
positive or negated. And the low-order bit is all that we need when saving only the lower 
half of the product! If we were building a multiplier that computed the full product, we’d 
see many differences between a multiplier that handles unsigned operands and one that 
handles two’s complement operands, but these differences only affect how the high half 
of the product is computed. 

We’ve created a test jig to help debug your multiplier. Your netlist should incorporate the 
following three .include statements 

.include "/mit/6.004/jsim/nominal.jsim" 


.include "/mit/6.004/jsim/stdcell.jsim" 


.include "/mit/6.004/jsim/lab3multiply.jsim" 


and the standard alu subcircuit definition 

.subckt alu ALUFN[5:0] A[31:0] B[31:0] alu[31:0] z v n 
… your ALU with multiplier circuit here … 
.ends 

This test jig includes test cases for 

all combinations of (0, 1, -1)*(0,1,-1),  

2i*1 for i = 0, 1, …, 31 

-1*2i for i = 0, 1, …, 31 

(3 << i) * 3 for i = 0, 1, …, 31 


When you’ve completed your design, you can use lab3checkoff_10.jsim to test your improved 
ALU implementation.  This checkoff file contains all the tests from lab3checkoff_6.jsim plus 
additional tests to verify that your multiplier circuitry is working correctly.  There’s also a handy 
set of debugging tests in lab3multiply.jsim which can help track down problems in your design. 

Design Note:  Combinational multipliers implemented as described above are pretty slow!  There 
are many design tricks we can use to speed things up – see the appendix on “Computer 
Arithmetic” in any of the editions of Computer Architecture A Quantitative Approach by John 
Hennessy and David Patterson (Morgan Kauffmann publishers). 
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