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Programmable machines

Problem 1. Consider the following circuit: 

 

The heavy lines represent busses, which are many signals grouped together, e.g., an eight-bit bus is eight 
separate signal wires that are treated as a group. When a bus connects to one or more components, it's just 
shorthand for drawing the individual signal wires between those components. 

A.  The components with triangular schematic symbols are tristate drivers that operate like buffers 
except that they have an additional control input called an enable. When the enable is high, the 
buffer is on and the input value is driven onto the output. When the enable is low, the buffer is off 
and doesn't drive anything onto its output (i.e., the output pin is in a high-impedance state). What 
rules should the designer follow when designing the logic that generates DRA, DRB and DRALU 
in order to ensure that the DBUS signals always have legitimate values? 

B.   Draw a schematic showing how a tristate driver might be implemented using mosfets. Hint: 
The following schematic shows one way of implementing a tristate driver. 



 

You just have to fill in the logic inside each of the clouds-think about for what values of DATA, 
ENABLE you want the pullup to be on and replace the upper cloud with one or more logic gates 
that implement that equation. Ditto for the pulldown and lower cloud. 

C.   The register-like symbols labeled "Reg A" and "Reg B" also have an additional enable input 
and are called load-enabled registers. When the enable is high, the register will be loaded from the 
incoming data. When the enable is low, the register reloads itself with its previous value. Show 
how to implement a load-enabled register from a regular D-register and a 2-way multiplexer. 

D.  It's considered bad practice to control the loading of a register by "gating" its clock, i.e., by adding 
some logic that controls whether or not the register sees a rising clock edge. Briefly explain why 
"gating the clock" is discouraged. Hint: consider the effects of clock skew and logic hazards. 

E.  The arithmetic-logic unit (ALU) has two data inputs (A and B) and, in this circuit, can perform 
only two operations, based on the single control signal FN: 

when FN = 0, the ALU output is A-B 
when FN = 1, the ALU output is B-A 

The ALU also generates two condition codes which give us some additional information about the 
ALU output: 

Z = 1 when the ALU output is the number "0" 
N = 1 when the ALU output is a negative number 

Assuming that we have 8-bit data values and use a two's complement representation for the data 
values processed by the ALU, draw gate-level schematics for the logic that generates the Z and N 
signals from the ALU output value. 

F.   Your job is to build a controller that will cause the circuit above to execute the following 
algorithm which computes the greatest common divisor of two inputs: 

        while (a != b)



                if (a > b) a = a - b;
                else b = b - a;

The controller will be a state machine that takes 2 bits of input (Z and N) and produces control 
signals for the data paths (DRA, DRB, DRALU, LDA, LDB, FN). 

Draw a state diagram for the controller. Outputs from your FSM should depend only on the current 
state. Indicate which are the initial and final states of your FSM on the diagram. 

G.   Supply a truth table for the logic that generates the control signals. 

Problem 2. The material in this question will not covered by any quizzes. It's presented here as an 
extended example of a programmable datapath. 

The following diagram shows the datapath and control circuitry for a nifty little microprogrammed 
architecture the students used to build in the 6.004 lab: 



 

Some features of the MAYBE: 

●     The datapath is 8 bits wide. All the subsystems connect to a common 8-bit bus which routes data 
between the subsystems. In a particular cycle, one of the subsystems is selected to drive data onto 
the bus (chosen by the DR signals) which can then be loaded into the selected destination (chosen 
by the LD signals).

●     The Control ROM is programmed as a nanointerpreter that executes one of 256 microinstructions 
selected by the contents of the OP register. Each microinstruction consists of up to 16 
nanoinstruction; the nanoPC is generated by the PHASE counter which is reset to 0 each time the 
OP register is loaded.

●     The Control ROM is programmed using the following template:

Opcode Phase COND = ADR+ ALU CC DRSEL LDSEL Comment



******** **** * = 1 111111 11 001 000 Opcode = uROM; ADR+

"*" is used to match either "0" or "1" on the corresponding address line. The template above 
initializes every nanoinstruction in the Control ROM to an operation that reads the next byte from 
the UROM (DRSEL = 001), places it in the OP register (LDSEL = 000), and then increments the 
ADRHI/ADRLO registes (ADR+ = 1). 

●     The UROM contains a microprogram that is executed by the nanointerpreter. Each 
microinstruction in the UROM begins with an 8-bit opcode; microinstruction execution begins by 
loading the opcode into the OP register. As the nanointerpreter executes the nanocode associated 
with that opcode, additional operand bytes may be fetched from the UROM. The final step in 
executing a microinstruction is to load the OP register with the opcode of the next microinstruction.

●     The ADRHI/ADRLO registers form a 16-bit program counter for the UROM program. These 
registers can be loaded from the data bus (eg, when doing a branch) or simply incremented by 
asserting ADR+. Note that the ADRHI/ADRLO registers are incremented at the end of the cycle 
after they have been used as the address for the UROM in the current cycle.

A.  If we inadvertently switch connections on two of the wires that run from the MAR register to the 
address inputs of the SRAM will operation be affected? Is your answer the same if we switch two 
wires running between ADRHI/ADRLO and the address inputs to the UROM? If the answers are 
not the same, what constitutes the difference between the SRAM and UROM? 

B.  What, if anything, prevents two drivers from putting conflicting data on the data bus of the 
MAYBE (ignore transients during propagation delays of the control circuitry)? Can such conflicts 
happen if there are programming errors in the Control ROM? 

C.  Given a big enough Control ROM, could the LDSEL and DRSEL decoders be eliminated 
(producing the load and drive signals directly as Control ROM outputs)? If so, what advantage 
might this have? 

D.  Execution of a nanoprogram can be influenced by information for the datapath? Explain how a 
nanoprogram can make data-dependent decisions. 

E.  Given a big enough Control ROM, could the condition shift register be eliminated (using the 
condition bits directly as Control ROM inputs)? If so, what advantage might this have? How many 
more (or fewer) outputs and inputs would the Control ROM need to have to implement this? What 
would be the size (in bits) of the Control ROM? 

F.  The nanoinstruction shown above selects the UROM as the data source and asserts ADR+ during 
the same clock cycle. How does this work, i.e., is the original or incremented address used when 
accessing the UROM? 



G.  What does the following nanocode program do? 

Opcode Phase COND = ADR+ ALU CC DRSEL LDSEL Comment
00001010 0000 * = 1 111111 11 001 101 MAR = uROM; ADR+
00001010 0001 * = 0 111111 11 100 010 A = SRAM
00001010 0010 * = 1 111111 11 001 101 MAR = uROM; ADR+
00001010 0011 * = 0 111111 11 100 011 B = SRAM
00001010 0100 * = 1 111111 11 001 101 MAR = uROM; ADR+
00001010 0101 * = 0 100110 00 010 100 SRAM = A + B; latch CCs
00001010 0110 * = 1 111111 11 001 000 OP = uROM; ADR+

H.  What does the following nanocode program do? 

Opcode Phase COND = ADR+ ALU CC DRSEL LDSEL Comment
00001011 0000 * = 1 111111 11 001 010 A = uROM; ADR+
00001011 0001 * = 1 111111 11 001 101 MAR = uROM; ADR+
00001011 0010 * = 0 111111 11 100 011 B = SRAM
00001011 0011 * = 1 111111 11 001 101 MAR = uROM; ADR+
00001011 0100 * = 0 100110 00 010 100 SRAM = A + B; latch CCs
00001011 0101 * = 1 111111 11 001 000 OP = uROM; ADR+

I.  What does the following nanocode program do? 

Opcode Phase COND = ADR+ ALU CC DRSEL LDSEL Comment
00001100 0000 * = 1 111111 11 001 010 A = uROM; ADR+
00001100 0001 * = 0 111111 11 001 001 ADR = uROM
00001100 0010 * = 0 111111 11 010 001 ADR = A
00001100 0011 * = 1 111111 11 001 000 OP = uROM; ADR+

J.  What does the following nanocode program do? 

Opcode Phase COND = ADR+ ALU CC DRSEL LDSEL Comment
00010111 0000 * = 1 111111 11 001 010 A = uROM; ADR+



00010111 0001 * = 0 111111 01 010 010 Shift CC's
00010111 0010 1 = 0 111111 11 001 001 ADR = uROM
00010111 0011 1 = 0 111111 11 010 001 ADR = A
00010111 0100 1 = 1 111111 11 001 000 OP = uROM; ADR+
00010111 0010 0 = 1 111111 11 001 010 A = uROM; ADR+
00010111 0011 0 = 1 111111 11 001 000 OP = uROM; ADR+

K.  What does the following nanocode program do? 

Opcode Phase COND = ADR+ ALU CC DRSEL LDSEL Comment
00000011 0000 * = 0 110011 11 010 101 MAR = 11111111
00000011 0001 * = 0 111111 11 100 010 A = SRAM
00000011 0010 * = 0 111110 11 010 100 SRAM = A - 1
00000011 0011 * = 1 111111 11 001 101 MAR = uROM; ADR+
00000011 0100 * = 0 111111 11 100 011 B = SRAM
00000011 0101 * = 0 111111 11 010 101 MAR = A
00000011 0110 * = 0 101011 11 010 100 SRAM = B
00000011 0111 * = 1 111111 11 001 000 OP = uROM; ADR+


