
MIT OpenCourseWare
http://ocw.mit.edu 

6.004 Computation Structures 
Spring 2009 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


M A S S A C H U S E T T S I N S T I T U T E O F T E C H N O L O G Y

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE


6.004 Computation Structures 
Lab #1 

General Information 

Lab assignments are due on Thursdays; check the on-line course calendar for the actual due date 
for each lab. Look at the on-line questions before you start to see what information you should 
collect while working on each lab. 

You can visit each on-line question page as many times as necessary to complete the assignment 
– you do not have to answer all the questions in a single session. Click on the “Save” button at 
the bottom of the question page to save your answers. You can then come back to the page later 
on and pick up where you left off. You can also check your answers at any time by clicking on 
the “Check” button. When the system detects that all your answers are correct (either because of 
a “Check” or “Save”), it will give you credit for completing the assignment. 

To receive credit for a lab, you’ll need to have a short lab checkoff meeting with a member of 
the course staff and answer some questions about your work. Just come by the lab after you’ve 
completed your check-in and talk with one of the on-duty staff. The meeting can happen after the 
due date of the lab but to receive full credit you must complete the meeting within one week of 
the lab due date. To avoid long waits choose a time other than Wed or Thu evenings. 

The lab gets crowded just before an assignment is due and some of the problems are probably too 
long to be done the night before the due date, so plan accordingly. There will be course staff in 
the lab during the late afternoon and evening; check the course website for this semester’s 
schedule. 

The 6.004 lab is open 24 hours-a-day, 7 days-a-week. An access code is 
required for entry; it was given out in the email that included your section assignment. The lab 
has Linux-Athena workstations that can be used to complete the homework assignments. The lab 
software is written in Java and should run on any Java Virtual Machine supporting JDK 1.3 or 
higher. The courseware can be run on any Sun or Linux Athena workstation. You can also 
download the courseware for your Linux or Windows machine at home – see the Courseware 
page at the 6.004 website. 

Introduction to JSim 

In this lab, we’ll be using a simulation program (JSim) to make some measurements of an N-
channel mosfet (or “nfet” for short). JSim uses mathematical models of circuit elements to make 
predictions of how a circuit will behave both statically (DC analysis) and dynamically (transient 
analysis). The model for each circuit element is parameterized, e.g., the mosfet model includes 
parameters for the length and width of the mosfet as well as many parameters characterizing the 
physical aspects of the manufacturing process. For the models we are using, the manufacturing 
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parameters have been derived from measurements taken at the integrated circuit fabrication 
facility and so the resulting predictions are quite accurate. 

The (increasingly) complete JSim documentation can be found at the course website. But we’ll 
try to include pertinent JSim info in each lab writeup. 

To run JSim, login to an Athena console. We recommend using the computers in the 6.004 lab 
since JSim has been tested and is known to run with satisfactory performance in that 
environment. Another benefit of using the 6.004 lab is that there’s plenty of help around, both 
from your fellow students and the course staff. After signing onto the Athena station, add the 
6.004 locker to gain access to the design tools and model files (you only have to do this once each 
session): 

athena% add 6.004


Start JSim running in a separate window by typing 

athena% jsim &


It can take a few moments for the Java runtime system to start up, please be patient! JSim takes 
as input a netlist that describes the circuit to be simulated. The initial JSim window is a very 
simple editor that lets you enter and modify your netlist. You may find the editor unsatisfactory 
for large tasks—it’s based on the JTextArea widget of the Java Swing toolkit that in some 
implementations has only rudimentary editing capabilities. If you use a separate editor to create 
your netlists, you can have JSim load your netlist files when it starts: 

athena% jsim filename … filename &


There are various handy buttons on the JSim toolbar: 

Exit. Asks if you want to save any modified file buffers and then exits JSim. 

New file. Create a new edit buffer called “untitled”. Any attempts to save this 
buffer will prompt the user for a filename. 

Open file. Prompts the user for a filename and then opens that file in its own edit 
buffer. If the file has already been read into a buffer, the buffer will be reloaded 
from the file (after asking permission if the buffer has been modified). 

Close file. Closes the current edit buffer after asking permission if the buffer has 
been modified. 

Reload file. Reload the current buffer from its source file after asking permission 
if the buffer has been modified. This button is useful if you are using an external 
editor to modify the netlist and simply want to reload a new version for 
simulation. 
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Save file. If any changes have been made, write the current buffer back to its 
source file (prompting for a file name if this is an untitled buffer created with the 
“new file” command). If the save was successful, the old version of the file is 
saved with a “.bak” extension. 

Save file, specifying new file name. Like “Save file” but prompts for a new file 
name to use. 

Save all files. Like “save file” but applied to all edit buffers. 

Stop simulation. Clicking this control will stop a running simulation and display 
whatever waveform information is available. 

Device-level simulation. Use a Spice-like circuit analysis algorithm to predict 
the behavior of the circuit described by the current netlist. After checking the 
netlist for errors, JSim will create a simulation network and then perform the 
requested analysis (i.e., the analysis you asked for with a “.dc” or “.tran” control 
statement). When the simulation is complete the waveform window is brought to 
the front so that the user can browse any results plotted by any “.plot” control 
statements. 

Fast transient analysis. This simulation algorithm uses more approximate device 
models and solution techniques than the device-level simulator but should be 
much faster for large designs. For digital logic, the estimated logic delays are 
usually within 10% of the predictions of device-level simulation. This simulator 
only performs transient analysis. 

Gate-level simulation. This simulation algorithm only knows about gates and 
logic values (instead of devices and voltages). We’ll use this feature later in the 
term when trying to simulate designs that contain too many mosfets to be 
simulated at the device level. 

Switch to waveform window. In the waveform window this button switches to 
the editor window. Of course, you can accomplish the same thing by clicking on 
the border of the window you want in front, but sometimes using this button is 
less work. 

Using information supplied in the checkoff file, check for specified node values 
at given times. If all the checks are successful, submit the circuit to the on-line 
assignment system. 

The waveform window shows various waveforms in one or more “channels.” Initially one 
channel is displayed for each “.plot” control statement in your netlist. If more than one waveform 
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is assigned to a channel, the plots are overlaid on top of each using a different drawing color for 
each waveform. If you want to add a waveform to a channel simply add the appropriate signal 
name to the list appearing to the left of the waveform display (the name of each signal should be 
on a separate line). You can also add the name of the signal you would like displayed to the 
appropriate “.plot” statement in your netlist and rerun the simulation. If you simply name a node 
in your circuit, its voltage is plotted. You can also ask for the current through a voltage source by 
entering “I(Vid)”. 

The waveform window has several other buttons on its toolbar: 

Select the number of displayed channels; choices range between 1 and 16. 

Print. Prints the contents of the waveform window (in color if you have a color 
printer!). If you are using Athena, you have to print to a file and then send the 
file to the printer: select "file" in the print dialog, supply the name you'd like to 
use for the plot file, then click "print". You can send the file to one of the printers 
in the lab using "lpr", e.g., "lpr -Pcs foo.plot". 

You can zoom and pan over the traces in the waveform window using the control found along the 
bottom edge of the waveform display: 

zoom in. Increases the magnification of the waveform display. You can zoom in 
around a particular point in a waveform by placing the cursor at the point on the 
trace where you want to zoom in and typing upper-case “X”. 

zoom out. Decreases the magnification of the waveform display. You can zoom 
out around a particular point in a waveform by placing the cursor at the point on 
the trace where you want to zoom out and typing lower-case “x”. 

surround. Sets the magnification so that the entire waveform will be visible in 
the waveform window. 

The scrollbar at the bottom of the waveform window can be used to scroll through the 
waveforms. The scrollbar will be disabled if the entire waveform is visible in the window. You 
can recenter the waveform display about a particular point by placing the cursor at the point 
which you want to be at the center of the display and typing “c”. 

The JSim netlist format is quite similar to that used by Spice, a well-known circuit simulator. 
Each line of the netlist is one of the following: 

A comment line, indicated by an “*” (asterisk) as the first character. Comment lines (and also 
blank lines) are ignored when JSim processes your netlist. You can also add comments at the 
end of a line by preceding the comment with the characters “//” (C++- or Java-style 
comments). All characters starting with “//” to the end of the line are ignored. Any portion 
of a line or lines can be turned into a comment by enclosing the text in “/*” and “*/” (C-style 
comments). 
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A continuation line, indicated by a “+” (plus) as the first character. Continuation lines are 
treated as if they had been typed at the end of the previous line (without the “+” of course). 
There’s no limitation on the length of an input line but sometimes it’s easier to edit long lines 
if you use continuation lines. Note that “+” also continues “*” comment lines! 

A control statement, indicated by a “.” (period) as the first character. Control statements 
provide information about how the circuit is to be simulated. We’ll describe the syntax of the 
different control statements as we use them below. 

A circuit element, indicated by a letter as the first character. The first letter indicates the type 
of circuit element, e.g., “r” for resistor, “c” for capacitor, “m” for mosfet, “v” for voltage 
source. The remainder of the line specifies which circuit nodes connect to which device 
terminals and any parameters needed by that circuit element. For example the following line 
describes a 1000Ω resistor called “R1” that connects to nodes A and B. 

R1 A B 1k


Note that numbers can be entered using engineering suffixes for readability. Common 
suffixes are “k”=1000, “u”=1E-6, “n”=1E-9 and “p”=1E-12. 

Characterizing MOSFETs 

Let’s make some measurements of an nfet by hooking it up to a couple of voltage sources to 
generate different values for VGS and VDS: 

We’ve included an ammeter (built from a 0v voltage source) so we can measure IDS, the current 
flowing through the mosfet from its drain terminal to its source terminal. Here’s the translation 
of the schematic into our netlist format: 

* plot Ids vs. Vds for 5 different Vgs values

.include "/mit/6.004/jsim/nominal.jsim"

Vmeter vds drain 0v

Vds vds 0 0v

Vgs gate 0 0v

* N-channel mosfet used for our test

M1 drain gate 0 0 NENH W=1.2u L=600n

.dc Vds 0 5 .1 Vgs 0 5 1

.plot I(Vmeter)
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The first line is a comment. The second line is a control statement that directs JSim to include a 
netlist file containing the mosfet model parameters for the manufacturing process we’ll be 
targeting this semester. The pathname that’s shown will work when running on Athena; if you’re 
running at home you’ll need to specify the directory where you downloaded the 6.004 tools. The 
next three lines specify three voltage sources; each voltage source specifies the two terminal 
nodes and the voltage we want between them. Note that the reference node for the circuit 
(marked with a ground symbol in the schematic) is always called “0”. The “v” following the 
voltage specification isn’t a legal scale factor and will be ignored by JSim – it’s included just 
remind ourselves that last number is the voltage of the voltage source. All three sources are 
initially set to 0 volts but the voltage for the Vds and Vgs sources will be changed later when 
JSim processes the “.dc” control statement. 

We can ask JSim to plot the current through voltage sources which is how we’ll see what IDS is 
for different values of VGS and VDS. We could just ask for the current of the VDS voltage source, 
but the sign would be wrong since JSim uses the convention that positive current flows from the 
positive to negative terminal of a voltage source. So we introduce a 0-volt source with its 
terminals oriented to produce the current sign we’re looking for. 

The sixth line is the mosfet itself, where we’ve specified (in order) the names of the drain, gate, 
source and substrate nodes of the mosfet. The next item names the set of model parameters JSim 
should use when simulating this device; specify “NENH” to create an nfet and “PENH” for a P-
channel mosfet (“pfet”). The final two entries specify the width and length of the mosfet. Note 
that the dimensions are in microns (1E-6 meters) since we’ve specified the “u” scale factor as a 
suffix. Don’t forget the “u” or your mosfets will be meters long! You can always use 
scientific notation (e.g., 1.2E-6) if suffixes are confusing. 

The seventh line is a control statement requesting a DC analysis of the circuit made with different 
settings for the Vds and Vgs voltage sources: the voltage of Vds is swept from 0V to 5V in .1V 
steps, and the voltage of Vgs is swept from 0V to 5V in 1V steps. Altogether 51 * 6 separate 
measurements will be made. 

The eighth and final line requests that JSim plot the current through the voltage source named 
“Vmeter”. JSim knows how to plot the results from the dual voltage sweep requested on the 
previous line: it will plot I(Vmeter) vs. the voltage of source Vds for each value of voltage of the 
source Vgs—there will be 6 plots in all, each consisting of 51 connected data points. 

After you enter the netlist above, you might want to save your efforts for later use by using the 
“save file” button. To run the simulation, click the “device-level simulation” button on the tool 
bar. After a pause, a waveform window will pop up where we can take some measurements. As 
you move the mouse over the waveform window, a moving cursor will be displayed on the first 
waveform above the mouse’s position and a readout giving the cursor coordinates will appear in 
the upper left hand corner of the window. To measure the delta between two points, position the 
mouse so the cursor is on top of the first point. Now click left and drag the mouse (i.e., move the 
mouse while holding its left button down) to bring up a second cursor that you can then position 
over the second point. The readout in the upper left corner will show the coordinates for both 
cursors and the delta between the two coordinates. You can return to one cursor by releasing the 
left button. 

We’re now ready to make some measurements: 
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(A) To get a sense of how well the channel of a turned-on mosfet conducts, let’s estimate the 
effective resistance of the channel while the mosfet is in the linear conduction region. 
We’ll use the Vgs = 5V curve (the upper-most plot in the window). The actual effective 
resistance is given by ∂VDS/∂IDS and clearly depends on which VDS we choose. Let’s use 
VDS = 1.2V. We could determine the resistance graphically from the slope of a line 
tangent to the IDS curve at VDS = 1.2V. But we can get a rough idea of the channel 
resistance by determining the slope of a line passing through the origin and the point we 
chose on the IDS curve, i.e., 1.2V/ IDS. 

Of course, the channel resistance depends on the dimensions of the mosfet we used to 
make the measurement. For mosfets, their IDS is proportional to W/L where W is the 
width of the mosfet (1.2 microns in this example) and L is the length (0.6 microns in this 
example). When reporting the effective channel resistance, it’s useful to report the sheet 
resistance, i.e., the resistance when W/L = 1. That way you can easily estimate the 
effective channel resistance for size device by scaling the sheet resistance appropriately. 
Since W/L = 2 for the device you measured, it conducted twice as much current and has 
half the channel resistance as a device with W/L = 1, so you need to double the channel 
resistance you computed above in order to estimate the effective channel sheet resistance. 

Use the on-line questions page for this lab to report the value for IDS that you measured 
and the effective channel sheet resistance you calculated from that measurement. 

(B) Now let’s see how well the mosfet turns “off.”	 Take some measurements of IDS at various 
points along the VGS=0V curve (the bottom-most plot in the window). Notice that they 
aren’t zero! Mosfets do conduct minute amounts of current even when officially “off”, a 
phenomenon called “subthreshold conduction.” While negligible for most purposes, this 
current is significant if we are trying to store charge on a capacitor for long periods of time 
(this is what DRAMs try to do). Make a measurement of IDS when VGS=0V and 
VDS=2.5V. Based on this measurement report how long it would take for a .05pF 
capacitor to discharge from 5V to 2.5V, i.e., to change from a valid logic “1” to a voltage 
in the forbidden zone. Recall from 6.002 that Q = CV, so we can estimate the discharge 

. So if our mosfet switch controls access to the storage 
capacitor, you can see we’ll need to refresh the capacitor’s charge at fairly frequent 
intervals. 

Gate-level timing 

The following JSim netlist shows how to define your own circuit elements using the “.subckt” 
statement: 

* circuit for Lab#1, parts C thru F

.include "/mit/6.004/jsim/nominal.jsim"


* 2-input NAND: inputs are A and B, output is Z

.subckt nand2 a b z

MPD1 z a 1 0 NENH sw=8 sl=1

MPD2 1 b 0 0 NENH sw=8 sl=1

MPU1 z a vdd vdd PENH sw=8 sl=1

MPU2 z b vdd vdd PENH sw=8 sl=1

.ends


time as 
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* INVERTER: input is A, output is Z

.subckt inv a z

MPD1 z a 0 0 NENH sw=16 sl=1

MPU1 z a vdd vdd PENH sw=16 sl=1

.ends


The “.subckt” statement introduces a new level of netlist. All lines following the “.subckt” up to 
the matching “.ends” statement will be treated as a self-contained subcircuit. This includes model 
definitions, nested subcircuit definitions, electrical nodes and circuit elements. The only parts of 
the subcircuit visible to the outside world are its terminal nodes which are listed following the 
name of the subcircuit in the “.subckt” statement: 

.subckt name terminals…

* internal circuit elements are listed here

.ends


In the example netlist, two subcircuits are defined: “nand2” which has 3 terminals (named “a”, 
“b” and “z” inside the nand2 subcircuit) and “inv” which has 2 terminals (named “a” and “z”). 

Once the definitions are complete, you can create an instance of a subcircuit using the “X” circuit 
element: 

Xid nodes… name


where name is the name of the circuit definition to be used, id is a unique name for this instance 
of the subcircuit and nodes… are the names of electrical nodes that will be hooked up to the 
terminals of the subcircuit instance. There should be the same number of nodes listed in the “X” 
statement as there were terminals in the “.subckt” statement that defined name. For example, 
here’s a short netlist that instantiates 3 NAND gates (called “g0”, “g1” and “g2”): 

Xg0 d0 ctl z0 nand2

Xg1 d1 ctl z1 nand2

Xg2 d2 ctl z2 nand2


The node “ctl” connects to all three gates; all the other terminals are connected to different nodes. 
Note that any nodes that are private to the subcircuit definition (i.e., nodes used in the subcircuit 
that don’t appear on the terminal list) will be unique for each instantiation of the subcircuit. For 
example, there is a private node named “1” used inside the nand2 definition. When JSim 
processes the three “X” statements above, it will make three independent nodes called “xg0.1”, 
“xg1.1” and “xg2.1”, one for each of the three instances of nand2. There is no sharing of internal 
elements or nodes between multiple instances of the same subcircuit. 

It is sometimes convenient to define nodes that are shared by the entire circuit, including 
subcircuits; for example, power supply nodes. The ground node “0” is such a node; all references 
to “0” anywhere in the netlist refer to the same electrical node. The included netlist file 
nominal.jsim defines another shared node called “vdd” using the following statements: 

.global vdd

VDD vdd 0 3.3v


The example netlist above uses “vdd” whenever a connection to the power supply is required. 
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The other new twist introduced in the example netlist is the use of symbolic dimensions for the 
mosfets (“SW=” and “SL=”) instead of physical dimensions (“W=” and “L=”). Symbolic 
dimensions specify multiples of a parameter called SCALE, which is also defined in 
nominal.jsim: 

.option SCALE=0.6u


So with this scale factor, specifying “SW=8” is equivalent to specifying “W=4.8u.” Using 
symbolic dimensions is encouraged since it makes it easier to determine the W/L ratio for a 
mosfet (the current through a mosfet is proportional to W/L) and it makes it easy to move the 
design to a new manufacturing process that uses different dimensions for its mosfets. Note that in 
almost all instances “SL=1” since increasing the channel length of a mosfet reduces its current 
carrying capacity, not something we’re usually looking to do. 

We’ll need to keep the PN junctions in the source and drain diffusions reverse biased to ensure 
that the mosfets stay electrically isolated, so the substrate terminal of nfet (those specifying the 
“NENH” model) should always be hooked to ground (node “0”). Similarly the substrate terminal 
of pfet (those specifying the “PENH” model) should always be hooked to the power supply (node 
“vdd”). 

With the preliminaries out of the way, we can tackle some design issues: 

(C) To maximize noise margins we want to have the transition in the voltage transfer 
characteristic (VTC) of the nand2 gate centered halfway between ground and the power 
supply voltage (3.3V). To determine the VTC for nand2, we’ll perform a dc analysis to 
plot the gate’s output voltage as a function of the input voltage using the following 
additional netlist statements: 

* dc analysis to create VTC

Xtest vin vin vout nand2

Vin vin 0 0v


Vol vol 0 0.3v // make measurements easier!

Voh voh 0 3v // see part (D)


.dc Vin 0 3.3 .005


.plot vin vout voh vol


Combine this netlist fragment with the one given at the start of this section and run the 
simulation. To center the VTC transition, keep the size of the nfet in the nand2 definition 
as “SW=8 SL=1” and adjust the width of both pfets until the plots for vin and vout 
intersect at about 1.65 volts. Just try different integral widths (i.e, 9, 10, 11, …). Report 
the integral width that comes closest to having the curves intersect at 1.65V. 

(D) The noise immunity of a gate is the smaller of the low noise margin (VIL − VOL) and the 
high noise margin (VOH − VIH). If we specify VOL = 0.3V and VOH = 3.0V, what is the 
largest possible noise immunity we could specify and still have the “improved” NAND 
gate of part (C) be a legal member of the logic family? 

Hint: to measure the low noise margin, use the VTC to determine what VIN has to be in 
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order for VOUT to be 3V, and then subtract VOL (0.3V) from that number. To measure the 
high noise margin, use the VTC to determine what VIN has to be in order for VOUT to be 
0.3V, and then subtract that number from VOH (3.0V). We’ve added some voltage sources 
corresponding to VOL and VOH to make it easier to make the measurements on the VTC 
plot. 

NOTE: make these measurements using your “improved” nand2 gate that has the centered 
VTC, i.e., with the updated widths for the PFETS. 

Now that we have the mosfets ratioed properly to maximize noise immunity, let’s measure the 
contamination time (tC) and propagation time (tP) of the nand2 gate. The contamination delay, 
tCD, for the nand2 gate will be a lower bound for all the tC measurements we make. Similarly, the 
propagation delay, tPD, for the nand2 gate will be an upper bound for all the tP measurements. 

Recall that the contamination time is the period of output validity after the inputs have become 
invalid. So for nand2: 

tC-FALL = time elapsed from when input > VIL to when output < VOH


tC-RISE = time elapsed from when input < VIH to when output > VOL


tC = min(tC-RISE, tC-FALL)


Similarly the propagation time is the period of output invalidity after the inputs have become 
valid. So for nand2: 

tP-RISE = time elapsed from when input ≤ VIL to when output ≥ VOH


tP-FALL = time elapsed from when input ≥ VIH to when output ≤ VOL


tP = max(tP-RISE, tP-FALL)


Following standard practice, we’ll choose the logic thresholds as follows: 

VOL = 10% of power supply voltage = .3V

VIL = 20% of power supply voltage = .6V

VIH = 80% of power supply voltage = 2.6V

VOH = 90% of power supply voltage = 3V


You can use a voltage source with either a pulse or piece-wise linear waveform to generate test 
signals for your circuit. Here’s how to enter them in your netlist: 

Vid output 0 pulse(val1 val2 td tr tf pw per)


This statement produces a periodic waveform with the following shape: 
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Don’t forget to specify your times in nanoseconds (use an “n” suffix)! Do not specify zero rise 
and fall times since the simulation will probably fail to converge. To construct a piece-wise 
linear waveform, you need to supply a list of time,voltage pairs: 

Vid output 0 pwl(t1 v1 t2 v2 … tn vn)


The voltage will be v1 for times before t1, and vn for times after tn. 

(E) Replace the netlist fragment from (C) with the following test circuit that will let us

measure various delays:


* test jig for measuring tcd and tpd

Xdriver vin nin inv

Xtest vdd nin nout nand2

Cload nout 0 .02pf

Vin vin 0 pulse(3.3,0,5ns,.1ns,.1ns,4.8ns)


Vol vol 0 0.3v // make measurements easier!

Vil vil 0 0.6v

Vih vih 0 2.6v

Voh voh 0 3.0v


.tran 15ns


.plot vin


.plot nin nout vol vil vih voh


NOTE: make these measurements using your “improved” nand2 gate that has the centered 
VTC, i.e., with the updated widths for the pfets. 

We use an inverter to drive the nand2 input since we would normally expect the test gate 
to be driven by the output of another gate (there are some subtle timing effects that we’ll 
miss if we drive the input directly with a voltage source). Run the simulation and measure 
the contamination and propagation delays for both the rising and falling output transitions. 
(You’ll need to zoom in on the transitions in order to make an accurate measurement.) 
Combine as described above to produce estimates for tC and tP. 

(F) We mentioned several times in lecture the desire to have our circuits operate reliably over 
a wide range of environmental conditions. We can have JSim simulate our test circuit at 
different temperature by adding a “.temp” control statement to the netlist. Normally JSim 
simulates the circuit at room temperature (25°C), but we can simulate the circuit at, say, 
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100°C by adding the following to our netlist: 

.temp 100


For many consumer products, designs are tested in the range of 0°C to 100°C. Repeat 
your measurements of part (E) at 100°C and report your findings. Recompute your 
estimates for tC and tP indicating which measurement(s) determined your final choice for 
the two delays. 

Based on your experiment, if a Pentium 4 processor is rated to run correctly at 3Ghz at 
100°C, how fast can you clock it and still have it run correctly at room temperature 
(assuming tPD is the parameter that determines “correct” behavior)? This is why you can 
usually get away with overclocking your CPU—it’s been rated for operation under much 
more severe environmental conditions than you’re probably running it at! 

CMOS logic-gate design 

As the final part of this lab, your mission is to design and test a CMOS circuit that implements 
the function F(A,B,C) = C + A·B using nfets and pfets. The truth table for F is shown below: 

A B C F(A,B,C) 
0 0 0 0 
0 0 1 1 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 1 

Your circuit must contain no more than 8 mosfets. Remember that only nfets should be used 
in pulldown circuits and only pfets should be in pullup circuits. Hint: using six mosfets, 
implement the complement of F as one large CMOS gate and then use the remaining two mosfets 
to invert the output of your large gate. 

Enter the netlist for F as a subcircuit that can be tested by the test-jig built into lab1checkoff.jsim 
(a file that we supply and which can be found in the course locker). Note that the checkoff 
circuitry expects your F subcircuit to have exactly the terminals shown below – the inside 
circuitry is up to you, but the “.subckt F…” line in your netlist should match exactly the one 
shown below. 

.include "/mit/6.004/jsim/nominal.jsim"


.include "/mit/6.004/jsim/lab1checkoff.jsim"


… you can define other subcircuits (eg, INV or NAND gates) here …


.subckt F A B C Z

… your circuit netlist here

.ends
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lab1checkoff.jsim contains the necessary circuitry to generate the appropriate input waveforms to 
test your circuit. It includes a .tran statement to run the simulation for the appropriate length of 
time and a few .plot statements which will display the input and output waveforms for your 
circuit. 

For faster simulation, use the (fast transient analysis) button! 

Checkoff 

When you are satisfied your circuit works, you can start the checkoff process by making sure 
your top-level netlist is visible in the edit window and that you’ve complete a successful 
simulation run. Then click on the green checkmark in the toolbar. JSim proceeds with the 
following steps: 

1.	 JSim verifies that a .checkoff statement was found when your netlist was read in. 

2.	 JSim processes each of the .verify statements in turn by retrieving the results of the most 
recent simulation and comparing the computed node values against the supplied expected 
values. It will report any discrepancies it finds, listing the names of the nodes it was 
checking, the simulated time at which it was checking the value, the expected value and 
the actual value. 

3.	 When the verification process is successful, Jsim asks for your 6.004 user name and 
password (the same ones you use to login to the on-line assignment system) so it can send 
the results to the on-line assignment server. 

4.	 JSim sends your circuits to the on-line assignment server, which responds with a status 
message that will be displayed for you. If you’ve misentered your username or password 
you can simply click on the green checkmark to try again. Note that the server will check 
if your circuit has at most 8 mosfets – if it contains more, you’ll see a message to that 
effect and your check-in will not complete. 

If you have any difficulties with checkoff, talk to a TA. 
Remember to schedule a lab checkoff meeting with a member of 
the course staff after you complete the on-checkoff and on-line questions. This meeting can 
happen after the due date of the lab but must be completed within one week of the lab’s due 
date in order to receive full credit. 
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