
MIT OpenCourseWare
http://ocw.mit.edu 

6.005 Elements of Software Construction 
Fall 2008 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


Problem Set 1: The State Machine Paradigm 

6.005 Elements of Software Construction | Fall 2008 
Problem Set 1: The State Machine Paradigm 

The purpose of this problem set is to give you practice in the basic techniques of the state 
machine paradigm. You'll construct state transition diagrams and grammars for a variety of 
small problems, and code them using standard patterns. 

State Machine Reasoning 

Milk and Tea Puzzle. Here's a well-known puzzle. You have a glass of tea and an equal-
sized glass of milk. You pour some milk into the tea, mix it up throughly, and then transfer 
the same amount of liquid back to the milk. This process is repeated some number of times. 
Is there now more milk in the tea or more tea in the milk? 

The answer is that there is exactly the same amount. To prove this, (1) construct a state 
machine to model the problem; (2) define an invariant; and (3) show that the invariant is 
true in the initial state and is preserved by the state machine's actions. 

Hint: Treat each glass as consisting of a discrete number of particles, and define an action 
that does to-and-fro transfers in a single step. Also, note that, as specified, the machine is 
already non-deterministic, since it permits an arbitrary quantity of milk to be poured initially. 
Can you make it even more non-deterministic and still preserve the invariant? 

State Diagram Modeling 

Three-way Light. A 'three-way' lighting circuit consists of two switches and a single lamp; 
toggling either switch toggles the state of the lamp. Draw a state machine representing the 
behavior of this system, with events up_1 and down_1 for moving switch 1 up and down (and 

analogously for switch 2). Show the state of the lamp by marking the states of the machine 

appropriately. 

Cruise Control. Consider a cruise-control system with these events: on (turns the system 

on); set (records the current speed and attempts to maintain it); brake (stops attempting to 

maintain speed); resume (attempts to return to and maintain last recorded speed); and off 



Problem Set 1: The State Machine Paradigm 

(turns the system off and clears any memory of a recorded speed). Draw a state transition 
diagram that shows which event sequences are accepted (assuming that on is accepted only 

when the system is off, resume only when the system is on, etc), and which of three modes 

the system is in: OFF (not operating); ON (operating but not actively controlling speed); and 

ACTIVE (actively controlling speed). A mode may correspond to one or more states. Then, 

using this diagram as a basis, construct a second diagram that includes three additional 
events that are produced as outputs: save (which saves the current speed to a register), 

control (commanding the engine to maintain the speed in the register) and relinquish 

(relinquishing control of the engine to the driver). 

Alternating Bit Protocol. One way to compensate for a lossy communications channel is to 
have the receiver acknowledge each received message and have the sender retransmit if no 
acknowledgment is obtained. But if an acknowledgment arrives late, and a resend has already 
occurred, messages and their acknowledgments get out of step. To avoid this, you can attach 
a sequence number to each message so that the receiver can indicate which message is being 
acknowledged. The simplest version of this scheme is the Alternating Bit Protocol which uses 
sequence numbers of just one bit. Here's how it works. The sender marks outgoing messages 
with a zero, then a one, then a zero, etc. The receiver acknowledges each message with the 
same bit that the message was marked with. If either the sender or the receiver gets a 
message with the wrong bit, it resends its previous message. The sender also resends a 
message if it receives no acknowledgment at all after some unspecified elapsed time. Model 
this protocol as two state transition diagrams, one for the sender and one for the receiver, 
accompanied by a list of events and their definitions. Draw a third diagram to model the 
behavior of an unreliable channel between them that can hold up to two messages at a time, 
and can drop but never corrupt or reorder messages. 

Grammar Modeling 

Multi-Unit Calculator. It's often convenient to use different units in the same computation. 
For example, to figure out how many lines of twelve-point type fit in a six-inch column, it 
would be nice to have a calculator that accepted the expression "6in/12pt". Construct two 

grammars for such a language: first, a lexical grammar that breaks the sequence of 
characters into numbers, unit specifiers, operators, and left/right parentheses, filtering out 
spaces and tabs (but not requiring them as delimiters); and second, a syntactic grammar that 
groups expressions appropriately. Your grammar should allow nesting of expressions using 
parentheses (eg, "1in + (2in + 3in)"), and it should allow unit conversions (eg, "30pt in" 

to show 30 points in inches). Note: You need only handle inches and points, and you can 
assume that every expression denotes a length or a dimensionless scalar (and not, for 
example, a product of lengths). There are 12 points in a pica, 6 picas in an inch, and thus 72 



Problem Set 1: The State Machine Paradigm 

points in an inch. 

Cruise Control. Model the cruise control system described above but using grammars 
instead of state transition diagrams. 

Implementing with Patterns 

Multi-unit Calculator. Implement the multi-unit calculator described above, with a class 
whose main method takes a single string as an argument and returns a string as a result. You 
should split your program into two separate phases, one for 'lexing' (breaking the string into 
lexical tokens), one for 'parsing' (grouping the tokens syntactically). Your code for these 
phases should correspond directly to the two grammars you designed. Provide at least three 
JUnit test cases for your code. Hint: You can perform evaluation as part of the parsing phase 
or in a separate subsequent phase. 

Alternating Bit Protocol. Implement the alternating bit protocol as described above, 
including the unreliable communications channel. Each of the three components should be 
implemented as (at least) one class with a method step which, when called, causes the 

component to take a step -- such as sending, receiving or transmitting a message. Provide at 
least three JUnit test cases for your code that include a case in which the protocol handles 
dropped messages. 

Infrastructure 

No code is provided for this problem set. A directory called pset1 will be created for you in 

your personal repository, containing a copy of this file. In addition to your code and test 
cases, you should commit your solutions to the exercises as a single PDF file. 


