
MIT OpenCourseWare
http://ocw.mit.edu

6.005 Elements of Software Construction
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Lab 2: abc Music Player

6.005 Elements of Software Construction
Fall 2008
Lab 2: abc Music Player

In this lab, you will familiarize yourself with the abc notation and the Java MIDI API as a
preparation for Project 2. You will also get a chance to practice using the Visitor pattern.

Before Lab

Before coming to lab, please do the following:

●	 Read this hand out and the Project 2 description.
●	 Basic knowledge about the Western musical notation will be helpful in this lab as well as

the project. Skim through the Wikipedia article on modern musical symbols.
●	 For exercises on abc (and for debugging your implementation in Project 2), you may

also find existing abc players useful. There are many players available on different
platforms. Here are some of the recommended ones:

�❍ Linux: abcMIDI
�❍ Mac: BarFly
�❍ Windows: ABCexplorer
�❍ Web-based: convert-a-matic

More abc applications can be found here.
●	 Check out the abcPlayer project from your group SVN repository. The repository is

located at

svn+ssh://athena.dialup.mit.edu/mit/6.005/svn/groups/abcPlayer/groupK

where K is your assigned group number.

Java MIDI Sequencer

In the first section of the lab, you will learn about the Java MIDI Sequencer, which allows you
to schedule a series of notes to be played at certain time intervals.

Look at the package sound under src, and study the provided class, SequencePlayer. For this

project, you will not need to modify this class, but you should become comfortable using its

This course makes use of Athena, MIT's UNIX-based computing environment. OCW does not provide access to this environment.

http://en.wikipedia.org/wiki/Modern_musical_symbols
http://abc.sourceforge.net/abcMIDI/
http://www.barfly.dial.pipex.com/
http://stalikez.info/abc/abcex.php
http://www.concertina.net/tunes_convert.html
http://www.walshaw.plus.com/abc/software.html

Lab 2: abc Music Player

constructor and the two methods, addNote and play.

addNote(int note, int startTick, int numTicks): This method schedules a note to be played
at startTick for the duration of numTicks. Here, a "tick" is similar to a time step. At the

beginning of a musical piece, the global tick is initialized to 0, and as the music progresses
through the notes, the global tick is incremented by some number.

The first parameter note is a frequency value that corresponds to the pitch of a note. The

provided class Pitch contains a number of useful methods for working with pitches. The

method toMidiFrequency returns the frequency value of the particular note, and transpose

can be used to transpose the note some number of semitones up or down.

SequencePlayer(int beatsPerMinute, int ticksPerQuarterNote): The constructor for
SequencePlayer takes two parameters:

●	 The first, beatsPerMinute, is the tempo of a musical piece, expressed in the number of

beats per minute (BPM), where each beat is equal to the duration of one quarter note.
The BPM to be used for a particular piece depends on the value of the optional tempo
field ('Q') in the input abc file. When this field is absent, the default tempo is 100 BPM,
where each beat is equal in duration to the default note length (indicated by the field
'L').

●	 The second parameter, ticksPerQuarterNote, corresponds to the number of ticks per

quarter note. Note that ticks used by the sequencer are based on discrete time. Think
about how large this number needs to be in order to play notes of different durations in
an abc piece. For example, if ticksPerQuarterNote had a value of 2, then an eighth

note would be played for the duration of one tick, but you would not be able to schedule
a sixteenth note for the correct duration.

play() After all of the notes have been scheduled, you can invoke play to tell the sequencer

to begin playing the music.

Run the main method in SequencePlayer, which shows an example of using a sequencer to

play up and down a C major scale. In this example, all of the notes in the scale have been
hard-coded. In your abc player, you will be walking over your data structures that represent a
musical piece and automatically schedule the notes at appropriate ticks.

We will come back to the sequencer in the next part of the lab.

Lab 2: abc Music Player

abc Music Notation

In this part of the lab, you will familiarize yourself with various language constructs by writing
small, toy abc files and playing them using the Java MIDI sequencer.

This is a group exercise. Find your team members and work through this section together.

Task 1: Transcribe each of the following small pieces of music into an abc file. Name
your files as piece1.abc and piece2.abc, respectively, and commit them under the directory
sample_abc in your team's SVN repository.

You may find the abc subset description useful.

Piece No.1: A simple, 4/4 meter piece with triplets. As a starter, the header and the first two
bars are already provided. You should complete the rest of the piece by transcribing the last
two bars.

X: 1

T:Piece No.1

M:C

L:1/4

Q: 140

K:C

C C C3/4 D/4 E | E3/4 D/4 E3/4 F/4 G2 |

Piece No.2: A more complex piece, with chords, accidentals, and rests. Set its tempo to
200, with the default note length of 1/4.

Lab 2: abc Music Player

Task 2: Write JUnit tests that play these pieces using the sequencer, similar to the main
method in the SequencePlayer class. Store them in a separate class called

SequencePlayerTest.

Checkpoint. Find a TA or another member of the course staff, and demonstrate
your abc file creations by playing the two pieces on your computer.

Visitor Pattern

As discussed during the previous lecture, the Visitor pattern is a way to separate operations
from data structures, such that new operations can be added without having to modify the
structures. You may find the Visitor pattern useful for this project as you traverse over the
musical structures and perform a variety of operations. In this part of the lab, you will practice
using the Visitor pattern by applying it to simple, arithmetic expressions.

This is an individual exercise.

First, check out the project named traversal_java from your personal SVN repository.

Look at the abstract base class, Expr and its subclasses, Const, Plus, Minus, Mult, and Div,

as well as the Visitor interface, ExprVisitor. The class Const is a wrapper class for the

primitive Java type double.

Task 3: Write an EvaluateVisitor that walks over an expression and calculates its

value in double. You may also want to modify the Expr classes. Create three JUnit test cases

for the visitor and store them in ExprVisitorTest.java.

Task 4: Define an enumerated type called Sign that can take one of the three values,

POSITIVE, NEGATIVE, and UNKNOWN. Write a SignVisitor that returns the sign of an

expression without actually evaluating the expression. Note that your visitor should return

Lab 2: abc Music Player

POSITIVE or NEGATIVE only if it can determine the sign of the overall expression purely from

the arithmetic operators and the signs of the constants; otherwise, it should return UNKNOWN.

You may also modify the Expr classes as necessary. Write three JUnit test cases and store

them in ExprVisitorTest as well.

How would you have added the sign operation without using a visitor? What kind of changes
would you have made to the Expr classes?

Checkpoint. Find a TA or another member of the course staff, and demonstrate
your visitors.

Commit Your Solutions

This is the end of the lab. Be sure to commit all your code to your individual
(traversal_java) AND group (abcPlayer) SVN repositories. Since both you and your

team members are sharing the same repository, be careful to check for conflicts
when you commit, and don't break the build for your partners.

