
MIT OpenCourseWare
http://ocw.mit.edu

6.005 Elements of Software Construction
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

12/5/2008

1

Relational Databases

Rob Miller
Fall 2008

© Robert Miller 2008

Databases
Database servers sit behind big web sites like Amazon
and eBay

Databases are the standard way to maintain the state of a web site

Databases are embedded in many applications
Firefox browsing history is stored as a database on disk
Subversion stores your source code in a database

Embedded database is an alternative to saving and
loading a file formatloading a file format

Instead of saving Java heap objects to a file with a textual format like XML,
you can store the data in a database instead

© Robert Miller 2008

Benefits of Using a Database
Persistence

Databases are persistent by default – updates to the database are
immediately stored on disk
Usually robust to program crashes and hardware rebootsUsually robust to program crashes and hardware reboots
Contrast with objects in the Java heap, which disappear on a crash

Query performance
Databases build and maintain indexes to answer complex queries quickly,
e.g. “find books written by Stephen King in 2004”

Concurrency
Databases provide an effective synchronization mechanism, transactions, Databases provide an effective synchronization mechanism, transactions,
that allows safe concurrent updates to a pile of relational data

© Robert Miller 2008

Relational Databases
A relational database is a set of named tables

A table has a fixed set of named columns (aka fields or attributes) and a
varying set of unnamed rows (aka records or tuples)

3 lPerson table

Each cell in the table stores a value of a primitive data type
• e.g. string, integer, date, time

First Name LastName Email

Daniel Jackson dnj@mit.edu

Rob Miller rcm@mit.edu

2 rows

3 columnsPerson table

• object references are represented by integer IDs

A table represents a relation
In general, a mathematical relation is a set of n-tuples (a binary relation is
special case, which is a set of pairs)

© Robert Miller 2008

12/5/2008

2

Example
An object model we want to store in a database

Song Album
albumTracks

ArtistStringInteger

albumArtist

artistName

songName albumNameduration

lyric ! !
!

?

!

© Robert Miller 2008

Pure Relational View
One table per binary relation

songId songName

1 Mr. Brightside

songName relation
songId duration

1 4:17

duration relation

1 Mr. Brightside

2 Somebody Told Me

3 Girlfriend

albumName relation

songId lyric

3 Hey, hey, you, you, I don’t like your girlfriend...

lyric relation

albumTracks relation

2 5:57

3 3:42

© Robert Miller 2008

albumId albumName

101 Hot Fuss

102 The Best Damn Thing

albumName relation

albumId songId

101 1

101 2

102 3

albumTracks relation

Class/Relation View
Often all the exactly-one (!) relations for a class are
combined into a single table

Song relation

This table actually represents the Song class
Analogy to objects on the Java heap

songId songName duration

1 Mr. Brightside 4:17

2 Somebody Told Me 5:57

3 Girlfriend 3:24

gy j J p
• id column is the object’s address in memory, and other columns are

fields of the object
The id column is usually automatically generated by the database system
so that all songs have a unique ID
• Analogy: Java’s new operator automatically generates a fresh address

© Robert Miller 2008

Bad Designs
Relations with other multiplicities (+, *, ?) generally
should not be combined

Otherwise, ? relation would force columns to have empty cells

songId songName lyric

• Sometimes this is done anyway for performance reasons, just like nulls
are sometimes useful for Java field values

Multiplicity + and * would force columns to become arrays

songId songName lyric

1 Mr. Brightside

2 Somebody Told Me

3 Girlfriend Hey, hey, you, you, ...

© Robert Miller 2008

albumId albumName albumTracks

101 Hot Fuss 1, 2, 3, ...

albumId albumName track1 track2 track3 track4

101 Hot Fuss 1 2 3 4

12/5/2008

3

Querying a Relational Database
SQL (“Structured Query Language”)

SQL is a standard language for querying (and mutating) a relational
database
Most database systems support some flavor of SQLMost database systems support some flavor of SQL
SQL’s SELECT statement offers a compact language for retrieving subsets
of relational data
• Find all songs longer than 5 minutes

SELECT songName FROM Song WHERE duration > 300
If you know nothing else about SQL, you should know about SELECT
• Note that SQL is case-insensitive, so SELECT and select are the same,

 N d as are songName and songname

© Robert Miller 2008

Relational Algebra
SELECT is based on a few simple operations that can
be performed on relations

Each operation takes one or more relations and produces a relation
PROJECT filters the columnsPROJECT filters the columns
SELECT filters the rows
PRODUCT adjoins columns from two relations
RENAME renames columns

A relation is a set of rows, so the usual set operations also apply
UNION
INTERSECTION
DIFFERENCE

© Robert Miller 2008

Projection
Projection keeps a set of named columns and discards
the rest

SELECT songId, duration
FROM SongFROM Song

songId duration

1 4:17

2 4:57

3 5:57

© Robert Miller 2008

Selection
Selection keeps the subset of rows that match a
predicate and discards the rest

SELECT *
FROM SongFROM Song
WHERE duration > 300

Like filtering on the rows

songId songName duration

2 Somebody Told Me 5:57

© Robert Miller 2008

12/5/2008

4

Product
Cartesian product

The Cartesian product of two relations R1 and R2 is the result of
concatenating each row in R1 with all rows in R2
SELECT *SELECT
FROM Song, Album

songId songName duration albumId albumName

1 Mr. Brightside 4:17 101 Hot Fuss

2 Somebody Told Me 5:57 101 Hot Fuss

3 Girlfriend 3:24 101 Hot Fuss

1 Mr Brightside 4:17 102 The Best Damn Thing

© Robert Miller 2008

1 Mr. Brightside 4:17 102 The Best Damn Thing

2 Somebody Told Me 5:57 102 The Best Damn Thing

3 Girlfriend 3:24 102 The Best Damn Thing

Joins
A join is a special case of Cartesian product

When the two relations share a column, we only want to concatenate
rows that have the same value for that column
SELECT * use the table name to disambiguate SELECT
FROM Song, AlbumTracks
WHERE Song.songId = AlbumTracks.songId

g
columns with the same name

songId songName duration albumId songId

1 Mr. Brightside 4:17 101 1

2 Somebody Told Me 5:57 101 1

3 Girlfriend 3:24 101 1

Join can be represented by a product followed by a selection

© Robert Miller 2008

1 Mr. Brightside 4:17 101 2

2 Somebody Told Me 5:57 102 2

3 Girlfriend 3:24 102 2

Question
How do I get a list of songName, albumName pairs?

songName albumName

Mr Brightside Hot Fuss

SELECT songName, albumName
FROM Song, AlbumTracks, Album

Mr. Brightside Hot Fuss

Somebody Told Me Hot Fuss

Girlfriend The Best Damn Thing

WHERE Song.songId = AlbumTracks.songId
AND AlbumTracks.albumId = Album.albumId

© Robert Miller 2008

Other Set Operations
Union, intersection, difference of relations

Find songs longer than 5 minutes or containing “midnight” in the lyric
SELECT songId FROM Song WHERE duration > 300

UNIONUNION
SELECT songId FROM Lyrics WHERE lyric LIKE ‘%midnight%’

Find songs longer than 5 minutes for which we have the lyrics
SELECT songId FROM Song WHERE duration > 300

INTERSECT
SELECT songId FROM Lyrics

Find albums that don’t have any tracks
SELECT albumId FROM AlbumSELECT albumId FROM Album

EXCEPT
SELECT albumId FROM AlbumTracks

These operations are rarely used in practice, because select predicates can
usually do the job, and database systems are good at optimizing SELECT

© Robert Miller 2008

12/5/2008

5

Aggregate Functions
Accumulating a column of data into a single value

How long is the album Thriller?
SELECT SUM(duration)
FROM Song, Album, AlbumTracksFROM Song, Album, AlbumTracks
WHERE Song.songId = AlbumTracks.songId

AND Album.albumId = AlbumTracks.albumId
AND Album.albumName = “Thriller”

SUM

10:14

Other aggregate functions
AVG
COUNT
MAX
MIN

© Robert Miller 2008

Grouping
GROUP BY computes aggregate functions on subsets
of the tuples

How long is each album?
SELECT albumName SUM(duration)SELECT albumName, SUM(duration)
FROM Song, Album, AlbumTracks
WHERE Song.songId = AlbumTracks.songId

AND Album.albumId = AlbumTracks.albumId
GROUP BY albumName

albumName SUM

Hot Fuss 10:14

© Robert Miller 2008

Hot Fuss 10:14

The Best Damn Thing 3:47

Exercise
Write SELECT statements for the following queries

Find the name of the album with the song named “Girlfriend”

Find names of albums for which we have lyrics (for at least one song)

List all albums, showing album name and number of songs, g g

© Robert Miller 2008

Mutating the Database
Insert a row

INSERT INTO Song
VALUES (4, “Thriller”, 6:02)

Update rows
UPDATE Song
SET songName=“Smile Like You Mean It”, duration=4:57
WHERE songId = 1

Delete rows
DELETE FROM Song
WHERE songName = “Girlfriend”

© Robert Miller 2008

songId songName duration

1 Mr. Brightside 4:17

2 Somebody Told Me 5:57

3 Girlfriend 3:24

12/5/2008

6

Concurrency in Databases
Transactions allow concurrent database modifications

A transaction is a block of SQL statements that need to execute together

Transactions implement ACID semanticsTransactions implement ACID semantics
Atomicity – either the full effects of a transaction are recorded or no trace
of it will be found
Consistency – a transaction is recorded only if it preserves invariants
• e.g., every AlbumTrack row must contain an albumId that exists in

Album and a songId that exists in Song
Isolation – if two transactions operate on the same data, the outcome will
always be same as executing them sequentially one after the other
Durability – if the transaction completes, its effects will never be lost

© Robert Miller 2008

Transaction Example
Transfer money between bank accounts

BEGIN TRANSACTION
SELECT balance FROM Account WHERE accountId = 1

and put it in local variable balance1and put it in local variable balance1
SELECT balance FROM Account WHERE accountId = 2

and call it balance2
balance1 -= 100
balance2 += 100
UPDATE Account SET balance=balance1WHERE accountId = 1
UPDATE Account SET balance=balance2WHERE accountId = 2
COMMIT

© Robert Miller 2008

Transactions vs. Locks
Transaction is tentative until successful commit

COMMIT fails if a simultaneous transaction changed the same rows and
managed to commit first
If commit fails, the transaction is rolled back – i.e., it has no effect on the If commit fails, the transaction is rolled back i.e., it has no effect on the
database
Your program can retry the transaction if the commit failed

Database handles low-level concurrency mechanisms
e.g. it may lock the rows touched, or detect conflicts at commit time

Transactions are widely considered easier to program
locking discipline and granularity (database, table, row) is managed by the locking discipline and granularity (database, table, row) is managed by the
database implementer
programmer just has to think about which statements need to execute in
isolation, without acquiring or releasing locks
active research on transactional memory is trying to bring the notion
of transactions to the shared memory paradigm (like Java objects)

© Robert Miller 2008

Summary
Relations as database tables

Relational database is a relation-centric implementation of an object model

Normal form
All i i b llAll rows are unique, no entries can be null

Relational algebra for querying
Project, select, and join operators combine relations
SQL select statement uses all three operators

Transactions support concurrency
Widely considered easier than locks

© Robert Miller 2008

