
MIT OpenCourseWare
http://ocw.mit.edu 

6.005 Elements of Software Construction 
Fall 2008 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


Project 2: An ABC Music Player 

6.005 Elements of Software Construction 

Fall 2008 


Project 2: An ABC Music Player 


● Problem 
● Purpose 
● References 
● Specification 
● Tasks 
● Infrastructure 
● Deliverables and Grading 
● Hints 

Problem


Composition of a musical piece is often a trial-and-error process, in which the musician writes 
down a series of notes on paper and tests them out on a musical instrument, such as a piano. 
One way to do this on a computer is to type the notes into a text file using a special notation 
and feed them to a program that understands this notation. This way, you can transcribe your 
favorite pieces of music or compose your own pieces, and easily exchange them among your 
friends on the web. 

abc is one of the languages designed for this purpose. It was originally intended for notating 
folk and traditional tunes of Western Europe, but it provides a sufficient set of constructs for 
transcribing a reasonably complex piece of music, such as a Beethoven symphony. Since its 
invention in 1980's, abc has become one of the most popular notations for music, with around 

http://www.ucolick.org/~sla/abcmusic/sym7mov2.html


Project 2: An ABC Music Player 

50,000 abc files circulating around the web. 

In this project, you will build an abc player that plays an abc file, by parsing it and feeding it 
to the Java Midi API. You are required to handle only a subset of the language, which we will 
discuss in more detail below in the Specification section. This subset is sufficient to play a 
large number of interesting tunes that are available on the web, but you are welcome to 
implement the rest of the standard, as long as your overall design remains clean and simple. 

Purpose 

The purpose of this project is to help you gain experience in (1) designing and implementing 
programs in the functional style (that is, making extensive use of functions over immutable 
types); (2) designing and implementing abstract types; and (3) using common design 
patterns for constructing and traversing structures (such as Variant as Class, Interpreter, 
Iterator, and Visitor). It also introduces you to the fundamentals of compilation, in particular: 
(4) expressing a language as a grammar; (5) converting a text to an abstract syntax tree; 
and (5) organizing a compiler into phases (lexing, parsing, static semantic analysis, etc). 
Finally, the project will give you further practice in software engineering fundamentals, such 
as (6) clarifying a problem statement; (7) inventing clear and simple interfaces to minimize 
coupling, and identifying and resolving undesirable dependences; (8) structuring a program 
to make it easily testable, organizing, executing and evaluating test suites; and (9) working 
collaboratively in a team. 

References 

Before reading the problem specification, you should keep in mind that this document is NOT 
meant to provide you with comprehensive information on the abc notation. Instead, you 
should consult the following list of sites during your project: 

●	 abc standard v1.6: Current official standard for abc. 
●	 Required abc subset: a description of the required abc subset, including the grammar 

in an EBNF. For your interest, the full EBNF can be found here, but remember, you are 
required to implement ONLY our subset. 

●	 Chris Walshaw's abc site: An informative web site by the inventor of the language. 
Among other things, the site contains a set of examples and a tutorial, which should 
help get you up to speed with abc. 

●	 John Chambers' abc site: Another comprehensive site on abc. A great feature on this 
site is the abc tune finder, which lets you search through thousands of abc files around 
the web. 

http://www.walshaw.plus.com/abc/abc2mtex/abc.txt
http://mit.edu/6.005/www/fa08/projects/abcPlayer/abc_subset_description.html
http://mit.edu/6.005/www/fa08/projects/abcPlayer/assignment_files/abc_subset_bnf.txt
http://mit.edu/6.005/www/fa08/projects/abcPlayer/assignment_files/abc_subset_bnf.txt
http://www.norbeck.nu/abc/abcbnf.htm
http://www.walshaw.plus.com/abc/
http://trillian.mit.edu/~jc/music/abc/
http://trillian.mit.edu/~jc/cgi/abc/tunefind


Project 2: An ABC Music Player 

●	 Wikipedia article on abc. 
●	 Wikipedia article on modern musical symbols: A fairly comprehensive overview of the 

Western musical notation. 

Specification 
Note: You are NOT allowed to use any code taken from an existing abc player as a part of 
your implementation in this project, although you may study existing implementations and 
incorporate features of their design if you want to. 

Required Subset of abc. The subset of abc that you are required to implement in this 
project is described in a separate document, the abc subset for 6.005. 

Semantic Analysis. In addition to making sure that an input file is syntactically well formed 
with respect to the provided EBNF, you must also carry out checks to ensure that the music is 
semantically consistent. This phase is usually called static semantic analysis in a compiler. For 
example, one type of analysis that you might want to do is to check that the sum of the 
durations of notes in every bar is equal to the value that is represented by the meter 
(although this particular rule has some exceptions). In your specification, you should define a 
set of semantic checks and how you plan to deal with them, by displaying intelligible error or 
warning messages when problems are encountered, and either terminating without playing 
the piece or playing it as best you can. 

Interface Requirement. Your abc player should be a stand-alone Java application that takes 
as its only input argument the name of the abc file to be played. In addition to playing the 
music using the Java Midi API, it should also write the header information to the standard 
output stream so it can be displayed on a console. 

Tasks 
You should perform the following tasks: 

●	 Laboratory. Complete the lab for this project. A separate handout describes the lab 
activities. 

●	 Abstract Specification/Design. Describe the abc input files and the structures you 
plan to build from them using grammars, state machines and datatype productions. 
Note that the standard grammar will likely not be in a suitable form for parsing, and 
you may need to formalize aspects of the input file that are usually described 
informally (such as the lexical structure). List the semantic checks you will perform, 
and describe how violations will be treated. 

●	 Code Design. Sketch the code structure using dependency diagrams for two possible 

http://en.wikipedia.org/wiki/Abc_notation
http://en.wikipedia.org/wiki/Modern_musical_symbols


Project 2: An ABC Music Player 

implementations of your abstract design that differ substantively. List their relative 
merits, select one of them, and explain why you chose it. 

●	 Implementation. Implement your chosen code design in Java. You may find that you 
want to make changes to your design. You are free to do this, but should record the 
changes so it is clear how and why you diverged from the original design. 

●	 Test. Run the staff test suite using the test framework provided. Create at least three 
additional test cases (e.g. your own abc files) to demonstrate that your player is able 
to correctly parse and play various musical constructs, and also detect any semantic 
errors in an abc file. 

●	 Reflection. Write a brief commentary saying what you learned from this experience. 
What was easy? What was hard? What was unexpected? Briefly evaluate your solution, 
pointing out its key merits and deficiencies. 

Infrastructure 

We are providing you with the SequencePlayer class, which you may use to play a sequence 

of notes in your abc player. The SequencePlayer is essentially a scheduler. Its addNote(int 

note, int tick, int duration) method allows you to schedule a note (whose pitch is 

represented by note) starting at some time step (tick) for a certain duration (the number 

of ticks for which this note should be played). You may also use the provided Pitch class to 

obtain a numeric value of the pitch for a certain note (look at toMidiFrequency() method). 

We are also providing some example abc files that you can use to test your abc player 
(included in the SVN directory sample_abc): 

●	 A simple scale (scale.abc) 

●	 A Little Night Music by W. A. Mozart (little_night_music.abc) 

●	 Paddy O'Rafferty, an Irish tune (paddy.abc) 

●	 Invention by J. S. Bach (invention.abc) 

●	 Prelude by J. S. Bach (prelude.abc) 

●	 Fur Elise by L. v. Beethoven (fur_elise.abc) 

You can find many more examples online, including here. 

Deliverables and Grading 

For the first deadline, your deliverables are: 

http://mit.edu/6.005/www/fa08/projects/abcPlayer/sample_abc/scale.abc
http://mit.edu/6.005/www/fa08/projects/abcPlayer/sample_abc/little_night_music.abc
http://mit.edu/6.005/www/fa08/projects/abcPlayer/sample_abc/paddy.abc
http://mit.edu/6.005/www/fa08/projects/abcPlayer/sample_abc/invention.abc
http://mit.edu/6.005/www/fa08/projects/abcPlayer/sample_abc/prelude.abc
http://mit.edu/6.005/www/fa08/projects/abcPlayer/sample_abc/fur_elise.abc
http://www.walshaw.plus.com/abc/examples/


Project 2: An ABC Music Player 

● the abstract specification/design; 
● and the code design; 

Your TA will arrange to meet with your group during lab time to discuss your design deliverables. 

The deliverables for the second deadline are: 

● the implementation; 
● the tests; 
● and your reflections. 

Your code should be committed in the repository you share with your teammates by the 
deadline. All other parts of the project should be stored in your repository as two separate 
PDF documents, one for each deadline. 

Grades will be allotted according to the following breakdown: abstract design -- 25%; code 
design -- 25%; implementation -- 30%; testing -- 10%; reflection -- 10%. 

Hints 

Start early! This project is more work than it seems. Starting early on the project will give 
you more time to sort out any issues and ask the staff questions that may arise. 

Lexing and parsing: In some ways, this project is similar to the implementation of the multi­
unit calculator from Problem Set 1. Given the grammar for abc, you will need to build a 'lexer' 
that breaks the input string into tokens and a 'parser' that groups the tokens into a valid 
syntactic construct. 

Designing datatypes: The evaluation of an expression in the multi-unit calculator from 
Problem Set 1 was relatively simple. However, for the design of your abc player, you should 
think much more carefully about datatypes that you need to represent the musical 
constructs in abc. Start with simple constructs, such as notes and rests, and think about how 
you would build up on these primitive objects to create more complex structures. How would 
you represent a triplet? A chord? What does a bar consist of? How would you represent 
multiple voices? Sort out answers to these questions with your team members during the 
design stage. 

Evaluating expressions: Once you parse an abc file and create your own internal 



Project 2: An ABC Music Player 

representation of the music as an abstract syntax tree (AST), you will need to perform 
various computations that involve traversing the tree, possibly multiple times. Consider 
carefully the patterns you learned in lecture for performing these traversals. 

Parsing and pattern matching: We recommend that you follow the JSP approach to 
parsing the abc file; this will make it easiest to write a single parser that can handle the 
entire file, with complexities such as bars split across lines. You may also find the Java 
pattern matching libraries such as java.util.regex.Pattern and java.util.regex. 

Matcher helpful, but you should use them judiciously. 

Multiple voices: A particular challenge you should think about is how you will represent 
multiple voices, and how you will merge them into a single sequence of midi events. 


