MIT OpenCourseWare
lhttp://ocw.mit.edu

6.005 Elements of Software Construction
Fall 2008

For information about citing these materials or our Terms of Use, visit: [http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

Event-Based Programming

Rob Miller
Fall 2008

© Robert Miller 2008

Composite pattern

» Example: view hierarchy in GUIs

Event-based programming

» Example; nput handling;'n graphical user; nterfaces
Model-view-controller pattern

» Found throughout user interfaces

© Robert Miller 2008

GUIs are composed from small reusable pieces

button (JButton) v/ window (JFrame)

4=

4

tree widget
(JTree)

splitter bar

scrolling pane
(JSplitPane)

(JSplitPane)

© Robert Miller 2008

A GUI is structured as a hierarchy of views
» A view is an object that displays itself on a rectangular region of the screen

© Robert Miller 2008

View hierarchy is an example of the Composite pattern
» Primitive views don’t contain other views

* button, tree widget, textbox, thumbnail, etc.
» Composite views are used for grouping or modifying other views

* JSplitPane displays two views side-by-side with an adjustable splitter

* JScrollPane displays only part of a view, with adjustable scrollbars
Key idea
» primitives and composites implement a common interface (JComponent)
» containers can hold any JComponent, so both primitives and other

containers
JScrollPane JScrollPane

© Robert Miller 2008

Output
» GUIs change their output by mutating the view hierarchy

* e.g,to show a new set of photos, the current Thumbnails are removed
from the tree and a new set of Thumbnails is added in their place

» A redraw algorithm automatically redraws the affected views using the
interpreter pattern (paint() method)

Input

» GUIs receive keyboard and mouse input by attaching listeners to views
(more on this in a bit)

Layout

» An automatic layout algorithm automatically calculates positions and sizes
of views using the interpreter pattern (doLayout() method)

* Specialized composites (JSplitPane, JScrollPane) do layout themselves

* Generic composites (JPanel, JFrame) delegate layout decisions to a
layout manager (e.g. FlowLayout, GridLayout, BorderlLayout, ...)

© Robert Miller 2008

Centralized approach?
while (true) {
read mouse click
if (clicked on New Album) doNewAlbum();
else if (clicked on Delete Album) doDeleteAlbum();
else if (clicked on Add Photos) doAddPhotos();

else if (clicked on an album in the tree) doSelectAlbum();
else if (clicked on +/- button in the tree) doToggleTreeExpansion();

else if (clicked on a thumbnail) doToggleThumbnailSelection();

Not modular!

» Mixes up responsibilities for button panel, album tree, and thumbnails all in

one place
© Robert Miller 2008

Input handlers are associated with views
» Also called listeners, event handlers, subscribers, and observers
A

not to be confused with
. observer methods in a
JSplitPane datatype
JScrollPane

selectAlbum:

MouseListener
\‘ newAI!aum:
MouseListene

© Robert Miller 2008

selectThumbnail:
Mouselistener

Control flow through a graphical user interface
» A top-level event loop reads input from mouse and keyboard

» For each input event, it finds the right view in the hierarchy (by looking at
the X,y position of the mouse) and sends the event to that view’s listeners

> Listener does its thing (e.g. modifying the view hierarchy) and returns
immediately to the event loop

© Robert Miller 2008

JComponent Listener

class JComponent { interface MouseListener {

public void addMouseListener(MouseListener I) ...
public void removeMouseListener(MouseListener |) ...

void mousePressed(MouseEvent e);
void mouseReleased(MouseEvent e)
void mouseMoved(MouseEvent e);

private void fireMousePress(int x, int y) {
MouseEvent event = new MouseEvent(..., X, ¥, ...);
for (MouselListener | : listeners) {
l.mousePressed(e);
}

}

Component is very weakly coupled to its listeners
» Component doesn’t depend on the identity of the listening class, only that
it implements the MouseListener interface

» Component doesn’t depend on the number of listeners, and listeners can
come and go © Robert Miller 2008

GUI input handling is an example of the Publish-
Subscribe pattern

» aka Listener, Event, Observer

An event source generates a stream of discrete events

» In this example, the mouse is the event source

> Events are state transitions in the source

» Events often include additional info about the transition (e.g. x,y position of
mouse), bundled into an event object or passed as parameters

Listeners register interest in events from the source

» Can often register only for specific events — e.g., only want mouse events
occurring inside a view’s bounds

» Listeners can unsubscribe when they no longer want events

When an event occurs, event source distributes it to all
interested listeners

© Robert Miller 2008

Higher-level GUI input events

» |Button sends an action event when it is pressed (whether by the mouse
or by the keyboard)

» | Tree sends a selection event when the selected element changes (whether
by mouse or by keyboard)

» | Textbox sends change events when the text inside it changes for any
reason

Internet messaging
» Email mailing lists
» IM chatrooms

© Robert Miller 2008

We’ve seen how to separate input and output in GUIs
» Output is represented by the view hierarchy

» Input is handled by listeners attached to views

Missing piece is the backend of the system

> Backend (aka model) represents the actual data that the user interface is
showing and editing

» Why do we want to separate this from the user interface?

© Robert Miller 2008

Model-View-Controller (MVC) separates responsibilities
» View displays output

» Controller handles input

» Model stores application data

T ~Controller
/.-'/ Vlew = mohe_fressed{} / \‘_
/ P—— — [| ThumbnailSelector |
l.\ e I _?II ',_\\. fMous-eListEHEF‘ :,.'
A ., roggle) N
\h \ . T
== R —
ge:FiIe{i b
s Photo \
I“. ;.|

Listener interface decouples the view from the
controller (somewhat)

mousePressed()
/.——fﬂ_—_“- 7 Mouselistener

—_—

Controller

JComponent

View i l
Thumbnail ThumbnailSelectar
getFile() \// ‘“\\ —————
P s, | Not completely
'{ Photo \I | decoupled —in
l\\ /| practice, views

and controllers
\h_ Model _‘/// often have to be

tightly coupled

Controller mutates the model; model updates the view

e View 7 keyPressed() ontroller B
i R S PressedDelete
| FilesystemTree [& | \ (KeyListener) /
\>/_-' X 4
\ 4 4
N | - .y ~
__\‘ . |II _ad \ '“"H-.,___ _‘I. __F_/,/
=SS =g
change events mutator
observer methods (egfileDeleted)) methods
(e.g getRootFolder(). o | = (e.g deleteFile())
getFiles()) % A
f Filesystem e
N N .-’.I
~__ Model i

More interfaces decouple the view and the model

KeyListener

Controller

PressedDelete
_d

View

FilesystemTree

—

Controller handles input
« listens for input events on the view hierarchy
* calls mutators on model or view

View handles output
« calls observers on the model to display it

* listens for model changes and updates display
TN input™ ‘| Listener |~ -

View] Controller
\ /; \\\ /
\x______ ____/‘\ gbservers & muta(or.’s \\“"m-__ __,-//
Listener / N " observers & mutators
change | Model I
events \\ ; /’
bserver e .
9 g ~ e Model handles application state
methods - * implements state-changing behavior
* sends change events to views

JTextField is a JComponent that can
be added to a view hierarchy

."' A
. JTextField | \
/ move cursor I\ 4
S— A : \..\Hm >
text change. * e Jedit text
events N
get text [\
1 Document -

KeyListener is a listener for
keyboard events

KeyListener
)

keypress events

S
Document represents a mutable string of

characters

Separation of responsibilities
» Each module is responsible for just one feature

* Model: data
* View:output
¢ Controller: input
Decoupling
» View and model are decoupled from each other; so they can be changed
independently
» Model can be reused with other views
* e.g.JTree view that displays the full filesystem tree, and a JLabel view
that just displays the number of files

> Multiple views can simultaneously share the same model
» Views can be reused with other models, as long as the model implements

an interface

¢ e.g.]JTree class (the view) and TreeModel interface

© Robert Miller 2008

Spaghetti of event handlers
» Control flow through an event-based program is not simple

» You can’t follow the control just by studying the source code, because
control flow depends on listener relationships established at runtime

» Careful discipline about who listens to what (like the model-view-

controller pattern) is essential for limiting the complexity of control flow
Obscured control flow leads to some unexpected
pitfalls...

© Robert Miller 2008

Sequence diagram is good for depicting control flow

» Time flows downward

» Each vertical time line shows one object’s lifetime

» Horizontal arrows show calls and returns, trading control between objects

» Dark rectangles show when a method is active (i.e., has been called but
hasn’t returned yet)

client source listener interface Source {

addListener addListener()
removelListener()

observer()

mutator()
mutator }

changeEvent interface Listener {

changeEvent()

S

© Robert Miller 2408

The listener often calls methods on the source

» e.g., when a textbox gets a change event from its model, it needs to call
getText() to get the new text and display it

» So observer method calls may occur while the mutator is still in progress

client source listener

mutator

changeEvent

observer

Why is this a potential problem?

© Robert Miller 2008

class Filesystem {
private Map<File, List<File>> cache;
public List<File> getContents(File folder) {
check for folder in cache, otherwise read it from disk and update cache }
public void deleteContents(File folder) {
for (File f: getContents(folder)) {
f.delete();
fireChangeEvent(f, REMOVED); // notify listeners that f was deleted }
cache.remove(folder); // cache is no longer valid for this folder}

Solution
» source must establish rep invariant before giving up control to any listeners
» often done simply by waiting to send events until end of mutator

© Robert Miller 2008

11/7/2008

The listener might call mutator on the source

» e.g., when two sources are listening to each other in order to keep their
state synchronized

» So calls to mutators may occur while mutator is still in progress

client sourcel listener source 2 listener

mutator
changeEvent

mutator
changeEvent
—— o" " = 3

__mutator

Why is this a potential problem?

© Robert Miller 2008

. - . 45
change event Changelistener setText()
Slder JTextbox
setValue() —— Changelistener change event

Solution

» only send events when mutator actually causes a state change

© Robert Miller 2008

The listener might call removeListener() on the source

> This happens when the listener is done its work, e.g. a listener that
executes a stock trade as soon as a certain price is reached

» So calls to removelListener() may occur while mutator is still in progress

client source listener

set

removelListener

Why is this a potential problem?

© Robert Miller 2008

class Source {

private Listener([] listeners;

What happens if

listeners[i] removes
public void removeListener(Listener [) { itself here?

private int size;

for (inti = 0;i < size; ++i) {
if (listeners[i] == I) { listeners[i] = listeners[size-1]; --size; }
private void fireChangeEvent(...) {

for (inti = 0;i < size; ++i) listeners[i].changed(:
}
» Java collections (Set, List, etc) have the same problem:
It’s not safe to mutate a collection while you’re iterating over it
Solution
> fire events by iterating over a copy of the listeners data structure
» or use javax.swing.EventListenerList which copies only when necessary

© Robert Miller 2008

11/7/2008

View hierarchy

» Organizes the screen into a tree of nested rectangles

» Used for dispatching input as well as displaying output

» Uses the Composite pattern: compound views (windows, panels) can be
treated just like primitive views (buttons, labels)

Publish-subscribe pattern

» An event source sends a stream of events to registered listeners

» Decouples the source from the identity of the listeners

> Beware of pitfalls

MVC pattern

» Separation of responsibilities: model=data, view=output, controller=input

» Decouples view from model

© Robert Miller 2008

