
MIT OpenCourseWare
http://ocw.mit.edu

6.005 Elements of Software Construction
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

10/6/2008

1

Testing and Coverage

Rob Miller
Fall 2008

© Robert Miller 2008

Today’s Topics
why testing is important and hard

choosing inputs
input space partitioning
boundary testing

how to know if you’ve done enough
coverage

testing pragmatics
stubs, drivers, oracles
test-first development
regression testing

© Robert Miller 2008

WHY TESTING MATTERS

© Robert Miller 2008

Real Programmers Don’t Test!(?)
top 5 reasons not to test
5) I want to get this done fast – testing is going to slow me down.
4) I started programming when I was 2. Don’t insult me by testing my perfect

code!code!
3) testing is for incompetent programmers who cannot hack.
2) we’re not Harvard students – our code actually works!
1) “Most of the functions in Graph.java, as implemented, are one or two line

functions that rely solely upon functions in HashMap or HashSet. I am
assuming that these functions work perfectly, and thus there is really no
need to test them.” – an excerpt from a 6.170 student’s e-mail

© Robert Miller 2008

10/6/2008

2

Who Says Software is Buggy?
Ariane 5 self-destructed 37 seconds after launch

reason: a control software bug that went undetected
conversion from 64-bit floating point to 16-bit signed integer caused an
exceptionp
• because the value was larger than 32767 (max 16-bit signed integer)

but the exception handler had been disabled for efficiency reasons
software crashed ... rocket crashed ... total cost over $1 billion

© Robert Miller 2008

Another Prominent Software Bug
Mars Polar Lander crashed

sensor signal falsely indicated that the craft had touched down when it was
still 130 feet above the surface.
the descent engines shut down prematurely... and it was never heard from
again

the error was traced to a single bad line of code
Prof. Nancy Leveson: these problems "are well known as difficult parts of
the software-engineering process”... and yet we still can’t get them right

© Robert Miller 2008

The Challenge
we want to

know when product is stable enough to launch
deliver product with known failure rate (preferably low)
offer warranty?offer warranty?

but
it’s very hard to measure or ensure quality in software
residual defect rate after shipping:
• 1 - 10 defects/kloc (typical)
• 0.1 - 1 defects/kloc (high quality: Java libraries?)
• 0 01 - 0 1 defects/kloc (very best: Praxis NASA)0.01 - 0.1 defects/kloc (very best: Praxis, NASA)

example: 1Mloc with 1 defect/kloc means you missed 1000 bugs!

© Robert Miller 2008

Testing Strategies That Don’t Work
exhaustive testing is infeasible

space is generally too big to cover exhaustively
imagine exhaustively testing a 32-bit floating-point multiply operation, a*b
• there are 2^64 test cases!• there are 2^64 test cases!

statistical testing doesn’t work for software
other engineering disciplines can test small random samples (e.g. 1% of
hard drives manufactured) and infer defect rate for whole lot
many tricks to speed up time (e.g. opening a refrigerator 1000 times in 24
hours instead of 10 years)
gives known failure rates (e.g. mean lifetime of a hard drive)
but assumes continuity or uniformity across the space of defects, which is
true for physical artifacts
this is not true for software
• overflow bugs (like Ariane 5) happen abruptly
• Pentium division bug affected approximately 1 in 9 billion divisions

© Robert Miller 2008

Photographs of the Ariane 5 rocket
removed due to copyright restrictions.

Diagrams of the Mars Polar Lander
removed due to copyright restrictions.

10/6/2008

3

Two Problems
often confused, but very different
(a) problem of finding bugs in defective code
(b) problem of showing absence of bugs in good code

approachesapproaches
testing: good for (a), occasionally (b)
reasoning: good for (a), also (b)

theory and practice
for both, you need grasp of basic theory
good engineering judgment essential too

© Robert Miller 2008

Aims of Testing
what are we trying to do?

find bugs as cheaply and quickly as possible

reality vs. ideal
id ll h h b d iideally, choose one test case that exposes a bug and run it
in practice, have to run many test cases that “fail” (because they don’t
expose any bugs)

in practice, conflicting desiderata
increase chance of finding bug
decrease cost of test suite (cost to generate, cost to run)

© Robert Miller 2008

Practical Strategies
design testing strategy carefully

know what it’s good for (finding egregious bugs) and not good for
(security)
complement with other methods: code review, reasoning, static analysiscomplement with other methods: code review, reasoning, static analysis
exploit automation (e.g. JUnit) to increase coverage and frequency of
testing
do it early and often

© Robert Miller 2008

Basic Notions
what’s being tested?

unit testing: individual module (method, class, interface)
subsystem testing: entire subsystems
integration system acceptance testing: whole systemintegration, system, acceptance testing: whole system

how are inputs chosen?
random: surprisingly effective (in defects found per test case), but not
much use when most inputs are invalid (e.g. URLs)
systematic: partitioning large input space into a few representatives
arbitrary: not a good idea, and not the same as random!

how are outputs checked?how are outputs checked?
automatic checking is preferable, but sometimes hard (how to check the
display of a graphical user interface?)

© Robert Miller 2008

10/6/2008

4

Basic Notions
how good is the test suite?

coverage: how much of the specification or code is exercised by tests?

when is testing done?
d i d l i fi b f h dtest-driven development: tests are written first, before the code

regression testing: a new test is added for every discovered bug, and tests
are run after every change to the code

essential characteristics of tests
modularity: no dependence of test driver on internals of unit being tested
automation: must be able to run (and check results) without manual effort

© Robert Miller 2008

CHOOSING TESTS

© Robert Miller 2008

Example: Thermostat
specification

user sets the desired temperature Td
thermostat measures the ambient temperature Ta
want heating if desired temp is higher than ambient temp want heating if desired temp is higher than ambient temp
want cooling if desired temp is lower than ambient temp

if Td > Ta, turn on heating
if Td < Ta, turn on air-conditioning
if Td = Ta, turn everything off

© Robert Miller 2008

How Do We Test the Thermostat?
arbitrary testing is not convincing

“just try it and see if it works“ won’t fly

exhaustive testing is not feasible
ld i illi f ll ibl (Td T) iwould require millions of runs to test all possible (Td,Ta) pairs

key problem: choosing a test suite systematically
small enough to run quickly
large enough to validate the program convincingly

© Robert Miller 2008

10/6/2008

5

Key Idea: Partition the Input Space
input space is very large, but program is small

so behavior must be the “same” for whole sets of inputs

ideal test suite
id if f i i h h b h iidentify sets of inputs with the same behavior
try one input from each set

if Td > Ta turn on heatingif Td > Ta, turn on heating
if Td < Ta, turn on air-conditioning
if Td = Ta, turn everything off

© Robert Miller 2008

More Examples
java.math.BigInteger.multiply(BigInteger val)

has two arguments, this and val, drawn from BigInteger
partition BigInteger into:
• BigNeg SmallNeg 1 0 1 SmallPos BigPos

approach 1:
titi i t• BigNeg, SmallNeg, -1, 0, 1, SmallPos, BigPos

pick a value from each class
• -265, -9 -1, 0, 1, 9, 265

test the 7 × 7 = 49 combinations

static int java.Math.max(int a, int b)
partition into:
• a < b a = b a > b

partition inputs
separately,
then form all
combinations

approach 2:
titi th h la < b, a = b, a > b

pick value from each class
• (1, 2), (1, 1), (2, 1)

© Robert Miller 2008

partition the whole
input space (useful
when relationship
between inputs
matters)

More Examples
Set.intersect(Set that)

partition Set into:
• ∅, singleton, many

partition whole input space into:

use both approaches

partition whole input space into:
• this = that, this ⊆ that, this ⊇ that, this ∩ that ≠ ∅, this ∩ that = ∅

pick values that cover both partitionsp p
• {},{} {},{2} {},{2,3,4}
• {5},{} {5},{2} {4},{2,3,4}
• {2,3},{} {2,3},{2} {1,2},{2,3}

© Robert Miller 2008

Boundary Testing
include classes at boundaries of the input space
• zero, min/max values, empty set, empty string, null

why? because bugs often occur at boundaries
• off-by-one errorsoff by one errors
• forget to handle empty container
• overflow errors in arithmetic

© Robert Miller 2008

10/6/2008

6

Exercise
recall our quiz grammar

partition the input space of quizzes
devise a set of test quizzes

Option ::= Value? Text
Value ::= [digit+]
Text ::= char*
Rule ::= Range Message
Range ::= digit+ - digit+ :
Message ::= char*g

what important class of inputs
are we leaving out?

© Robert Miller 2008

COVERAGE

© Robert Miller 2008

Coverage
how good are my tests?

measure extent to which tests ‘cover’ the spec or code

spec coverage for state machines

all actions

all states

all transitions

state machine being tested

kinds of
coverage

all-actions, all-states ≤ all-transitions ≤ all-paths

© Robert Miller 2008

all transitions

all paths

State Diagram for Thermostat

if Td > Ta, turn on heating
if Td < Ta, turn on air-conditioning
if Td = Ta turn everything offif Td = Ta, turn everything off

a test case is a trace of (Td,Ta) pairs
all actions: (Td<Ta), (Td=Ta), (Td>Ta)
• e.g., using actual temperatures: (67, 70), (67, 67), (70, 67)

all states: the same trace would cover all states
all transitions: (Td<Ta) (Td=Ta) (Td > Ta) (Td=Ta)all transitions: (Td<Ta), (Td=Ta), (Td > Ta), (Td=Ta)
• e.g. (67, 70), (67, 67), (70, 67), (70, 70)

© Robert Miller 2008

10/6/2008

7

Code Coverage
view control flow graph as state machine

and then apply state machine coverage notions

example
if (< 10) ++if (x < 10) x++;

© Robert Miller 2008

How Far Should You Go?
for spec coverage

all-actions: essential
all-states, all-transitions: if possible
all paths: generally infeasible even if finiteall-paths: generally infeasible, even if finite

for code coverage
all-statements, all-branches: if possible
all-paths: infeasible

industry practice
all-statements is common goal, rarely achieved (due to unreachable code)
f t iti l i d t h d it i (“MCDC” difi d safety critical industry has more arduous criteria (eg, “MCDC”, modified

decision/condition coverage)

© Robert Miller 2008

A Typical Statement Coverage Tool
EclEmma Eclipse plugin

coveredcovered

uncovered

© Robert Miller 2008

coverage statistics
for packages and
classes

Black Box vs. Glass Box Testing
black box testing

choosing test data only from spec, without looking at implementation

 (i) iglass box (white box) testing
choosing test data with knowledge of implementation
• e.g. if implementation does caching, then should test repeated inputs
• if implementation selects different algorithms depending on the input,

should choose inputs that exercise all the algorithms
must take care that tests don’t depend on implementation details
• e g if spec says “throws Exception if the input is poorly formatted” • e.g. if spec says throws Exception if the input is poorly formatted ,

your test shouldn’t check specifically for a NullPtrException just
because that’s what the current implementation does

good tests should be modular -- depending only on the spec, not on the
implementation

© Robert Miller 2008

Courtesy of The Eclipse Foundation. Used with permission.

10/6/2008

8

Black Box vs. Glass Box Testing
best practice

generate black-box test cases until code coverage is sufficient

too low

© Robert Miller 2008

PRAGMATICS

© Robert Miller 2008

Testing Framework
driver

just runs the tests
must design unit to be drivable!
eg: program with GUI should have APIeg: program with GUI should have API

stub
replaces other system components
allows reproducible behaviours (esp. failures)

oracle
determines if result meets spec

f bl t ti d f tpreferably automatic and fast
varieties: computable predicate (e.g. is the result odd?), comparison with
literal (e.g. must be 5), manual examination (by a human)
in regression testing, can use previous results as “gold standard”

© Robert Miller 2008

Example: the Quote Generator

QuoteFormatterQuoter GeneratorQuoteFormatterQuoter Generator

HTMLGenerator RTFGenerator
Yahoo

© Robert Miller 2008

QuoteApp
want a stub for
the network, to
test without live
server

need an oracle for
testing generators

10/6/2008

9

Test-First Development
write tests before coding

specifically, for every method or class:
1) write specification
2) write test cases that cover the spec2) write test cases that cover the spec
3) implement the method or class
4) once the tests pass (and code coverage is sufficient), you’re done

writing tests first is a good way to understand the spec
think about partitioning and boundary cases
if the spec is confusing write more testsif the spec is confusing, write more tests
spec can be buggy too
• incorrect, incomplete, ambiguous, missing corner cases
• trying to write tests can uncover these problems

© Robert Miller 2008

Regression Testing
whenever you find and fix a bug

store the input that elicited the bug
store the correct output
add it to your test suiteadd it to your test suite

why regression tests help
helps to populate test suite with good test cases
• remember that a test is good if it elicits a bug – and every regression

test did in one version of your code
protects against reversions that reintroduce bug
the bug may be an easy error to make (since it happened once already)g y y (pp y)

test-first debugging
when a bug arises, immediately write a test case for it that elicits it
once you find and fix the bug, the test case will pass, and you’ll be done

© Robert Miller 2008

Summary
testing matters

you need to convince others that your code works
testing generally can’t prove absence of bugs, but can increase quality by
reducing bugsreducing bugs

test early and often
unit testing catches bugs before they have a chance to hide
automate the process so you can run it frequently
regression testing will save time in the long run

be systematic
use input partitioning boundary testing and coverageuse input partitioning, boundary testing, and coverage
regard testing as a creative design problem

use tools and build your own
automated testing frameworks (JUnit) and coverage tools (EclEmma)
design modules to be driven, and use stubs for repeatable behavior

© Robert Miller 2008

