
MIT OpenCourseWare
http://ocw.mit.edu

6.005 Elements of Software Construction
Fall 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

6.005
elements ofsoftwareconstruction

how to design a photo catalog

Daniel Jackson

topics for today

a problem
� conceptual design of a photo organizer

a new paradigm
� computation over relational structures
� today, the abstract design level: object modelling
� determines, in particular, model part of MVC (see last lecture)

object modelling
� snapshot semantics
� basic notation: domain/range, multiplicity, classification
� some classic patterns

© Daniel Jackson 2008 2

the problem

problem

Screenshot of Adobe Photoshop Lightroom removed due to copyright restrictions.
In the Library view, you can select images to add or remove.
The left-hand sidebar includes Collections that you can define.

design a photo cataloguing application
� Lightroom, iView MediaPro, iPhoto, Aperture, Picasa, etc
© Daniel Jackson 2008 4

what kind of problem is this?

mostly about conceptual design
� what are the key concepts?
� how are they related to one another?
� what kinds of structures?

good conceptual design leads to
� straightforward path to implementation
� simplicity and flexibility in final product

© Daniel Jackson 2008 5

why a new model?

why not use datatype productions?
� tree-like structures only: no sharing
� immutable types only

why not state machines?
� our catalog is a state machine
� but the problem lies in the structure of the state
� our state machine notation assumed simple states

a new approach: object models
� structure is a labelled graph
� put another way: sets of objects + relations

© Daniel Jackson 2008 6

the relational paradigm

computation is about
� actions, states, transitions
� functions, expressions, values
� and now: updates and queries on relations

why is this useful?
� conceptual modeling
� relational databases
� object-oriented programming*
� semantic web, document object models, etc

*for proposals to make relations explicit in object-oriented programming, see

this survey: James Noble, Roles and Relationships, ECOOP 2007 Workshop on

Roles and Relationships in Object-Oriented Programming, Multiagent Systems,

and Ontologies;
 http://iv.tu-berlin.de/TechnBerichte/2007/2007-09.pdf

basic OM notation

snapshots
a snapshot or object diagram
� shows a single instance of a structure

example for photo organizer
� in this case, two sets

Photo (shown in beige)
Collection (in grey)

� and two relations
photos: Collection -> Photo

subs: Collection -> Collection

9

a collection

a relationship:
C0 is subcollection of C1

a photo

a relationship:
P0 in collection C2

© Daniel Jackson 2008

more snapshots

how can we summarize this infinite set?

© Daniel Jackson 2008 10

an object model

each box
� denotes a (maybe empty) set of objects

each arc
� denotes a relation, ie. set of links between objects

note
� objects have no internal structure!
� all structure is in the relations

exercise
� draw a snapshot that the OM rules out

© Daniel Jackson 2008 11

Collection

Photo

subs

photos

enriching the notation

what’s wrong with these snapshots?
� how would we rule them out?

key idea: multiplicity
� measure the in-degree and out-degree of each relation

© Daniel Jackson 2008 12

multiplicity

A BR
m n

multiplicity markings
� on ends of relation arc
� show relative counts

interpretation
� R maps m A’s to each B
� R maps each A to n B’s

marking/meaning

+ one or more
* zero or more

! exactly one

? at most one

omitted marking equivalent to *

© Daniel Jackson 2008 13

R

kinds of function

standard kinds of function
� easily expressed with multiplicities

?
A B

A

R

BR

R is a function

!
R is a total function

? !

A B

A

R

BR

R is an injection

+	 !

R is a surjection

! !
A B R is a bijection

© Daniel Jackson 2008 14

multiplicity example

we’ve added naming
� always an important and subtle issue
� is the multiplicity constraint desirable? necessary?

Collection

Photo

subs

photos

Collection
Name

name
?!

*

*

?

© Daniel Jackson 2008 15

classifying objects

suppose we to classify photos
� by file location: online, offline, missing
� by selection: selected, focus Photo

Photo

Offline Missing Online

Selected

Focus

oval means
singleton set

© Daniel Jackson 2008 16

 A

classification syntax

can build a taxonomy of objects
� introduce subsets
� indicate which are disjoint
� and which exhaust the superset

A

B

A

B C

abstract
A

B C

B 㱪 B 㱯 C = 㱵 B 㱮 C = A

© Daniel Jackson 2008 17

relations on subsets

when placing a relation
� can place on subset
� loose multiplicity is a hint

Photo Filepath path
!

Offline Missing Online

Volume Date

vol since
! !

© Daniel Jackson 2008 18

composite

a classic pattern
� hierarchical containment
� file systems, org charts, network domains, etc

you’ve seen this with datatypes
� technical differences though
� OM allows cycles (but often rule out)
� OM can say just one root

Collection

FolderFolio

subs

Photo

photos

© Daniel Jackson 2008 19

hotel locking

example: hotel locking

modelling physical, distributed state

state in OM need not represent
� a centralized store
� data stored in a computer

© Daniel Jackson 2008 21

hotel locking

recodable locks (since 1980)
� new guest gets a different key
� lock is ‘recoded’ to new key
� last guest can no longer enter

how does it work?
� locks are standalone, not wired

a recodable locking scheme

card has two keys

if first matches lock,

recode with second

if second matches,

just open

k1

k0

k1 k1

k0

k1 k0

k1

k1

k0

k1 k1

k0

k1 k0

k1

exercise

draw an object model
� showing the essential state of hotel locking
� state includes front desk, locks, keys held by guests

review
� did you exploit multiplicities? keys are all about uniqueness
� did you include only the sets and relations that are needed?
� are your sets really sets, or are some of them ‘singleton placeholders’?
� do all your sets and relations have a clear interpretation?
� where are the various parts of the state stored physically?
� which relations are modifiable?

a solution

Guest

Card

holds

Room

Key

key

occupies

fst, snd

?

!

!

Issued

g->r in occupies: guest g has checked in

for room r but has not yet checked out

k in Issued: key k has already been
issued by front desk on some card: used
to ensure that locks are always recoded
with fresh keys

some subtleties
� guest may occupy more than one room
� family members may have identical cards

common errors

Desk

Key

issues

Card

Key

has

Hotel

Guest

guests

Key

Snd Fst

be wary of top-level singleton
� Desk and Hotel not needed

relations represent state, not actions
� so issues is suspect

need enough information in state to support application
� has is not enough: need to know which key is first, second

scope of classification
� classification of keys into first and second, is by card, not global
� so need relation, not subsets to indicate the distinction

colour palettes

example: colour palettes

modelling the state of an application
�	 how colours are organized

Screenshots of color schemes in the Keynote and PowerPoint
presentation programs removed due to copyright restrictions.

essential idea
� elements are coloured
� can assign colour from palette
� gives consistent appearance

© Daniel Jackson 2008	 28

colour

colour

colour

palette object models

three subtly different approaches
� think what happens when palette is modified
� hard vs. soft links: as in Unix

palette

Doc

Element

elements

Palette

Swatch

swatches

palette

Doc

Element

elements

Palette

Swatch

swatches

value key

lcolour

palette

Colour

value

Name

key

Colour

value

lcocolour

Doc

elements

Palette

Swatch

swatches

Element

Name

keylcolour

Name Colour

“Every problem in computer science can be solved by introducing another level of indirection”

-- David Wheeler

© Daniel Jackson 2008 29

completing the organizer

issues to resolve

can collections hold photos and subcollections?
� decision: yes, so not Composite pattern

how are “all photos” in catalog represented?
� decision: introduce non-visible root collection

unique collection names?
� decision: file system style, so siblings have distinct names

do parents hold children’s photos?
� in logic: all c: Collection | c.subs.photos in c.photos ?
�	 decision: use two relations instead

c.inserted: the photos explicitly inserted into collection c

c.photos: the photos in collection c implicitly and explicitly

invariant relates these: c.photos = c.inserted + c.subs.photos
© Daniel Jackson 2008	 31

final object model

Collection

Visible

subs

Photo

inserted,
photos

Root Selected

Image image

!

Collection
Name

name !

!

additional constraints
� all collections reachable from root (implies acyclic)

Collection in Root.*subs
� implicit photos are inserted photos plus photos in subcollections

all c: Collection | c.photos = c.inserted + c.subs.photos
� names unique within parent

all c: Collection | no c1, c2: c.subs | c1 != c2 and c1.name = c2.name
© Daniel Jackson 2008 32

modeling hints

hints

how to pick sets
� be as abstract as possible (thus Name, not String; SSN, not Number)
� but values to be compared must have same type (so Date, not Birthday)
� beware of singletons -- often a sign of code thinking

how to pick relations
� represent state, not actions (so atFloor: Elevator->Floor, not arrives)
� direction is semantic; doesn’t constrain ‘navigation’

choosing names
� choose names that make interpretation clear
� include a glossary explaining what relations and sets mean

© Daniel Jackson 2008 34

summary

principles

data before function
� before thinking about system function, think about data

an object model is an invariant
� meaning is set of structured states
� declared sets + subset relationships + relations between sets + multiplicities
� augment diagram with textual constraints (in Alloy, as above, or just English)

model objects are immutable
� all state kept in subsets and relations
� model objects have no ‘contents’
� important to keep coding options open

© Daniel Jackson 2008 36

