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PROFESSOR: We're going to start a brand new, exciting topic, dynamic programming.

AUDIENCE: Yes!

PROFESSOR: Yeah! So exciting. Actually, I am really excited because dynamic programming is my

favorite thing in the world, in algorithms. And it's going to be the next four lectures,

it's so exciting. It has lots of different facets. It's a very general, powerful design

technique. We don't talk a lot about algorithm design in this class, but dynamic

programming is one that's so important. And also takes a little while to settle in. We

like to injected it into you now, in 006.

So in general, our motivation is designing new algorithms and dynamic

programming, also called DP, is a great way-- or a very general, powerful way to do

this.

It's especially good, and intended for, optimization problems, things like shortest

paths. You want to find the best way to do something. Shortest path is you want to

find the shortest path, the minimum-length path. You want to minimize, maximize

something, that's an optimization problem, and typically good algorithms to solve

them involve dynamic programming. It's a bit of a broad statement.

You can also think of dynamic programming as a kind of exhaustive search. Which

is usually a bad thing to do because it leads to exponential time. But if you do it in a

clever way, via dynamic programming, you typically get polynomial time.

So one perspective is that dynamic programming is approximately careful brute

force. It's kind of a funny combination. A bit of an oxymoron. But we take the idea of

brute force, which is, try all possibilities and you do it carefully and you get it to
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polynomial time. There are a lot of problems where essentially the only known

polynomial time algorithm is via dynamic programming. It doesn't always work,

there's some problems where we don't think there are polynomial time algorithms,

but when it's possible DP is a nice, sort of, general approach to it.

And we're going to be talking a lot about dynamic programming. There's a lot of

different ways to think about it. We'll look at a few today. We're going to warm up

today with some fairly easy problems that we already know how to solve, namely

computing Fibonacci numbers. It's pretty easy. And computing shortest paths. And

then in the next three lectures we're going to get to more interesting examples

where it's pretty surprising that you can even solve the problem in polynomial time.

Probably the first burning question on your mind, though, is why is it called dynamic

programming? What does that even mean? And I used to have this spiel about,

well, you know, programming refers to the-- I think it's the British notion of the word,

where it's about optimization. Optimization in American English is something like

programming in British English, where you want to set up the program-- the

schedule for your trains or something, where programming comes from originally.

But I looked up the actual history of, why is it called dynamic programming. Dynamic

programming was invented by a guy named Richard Bellman. You may have heard

of Bellman in the Bellman-Ford algorithm. So this is actually the precursor to

Bellman-Ford. And we're going to see Bellman-Ford come up naturally in this

setting.

So here's a quote about him. It says, Bellman explained that he invented the name

dynamic programming to hide the fact that he was doing mathematical research. He

was working at this place called Rand, and under a secretary of defense who had a

pathological fear and hatred for the term research. So he settled on the term

dynamic programming because it would be difficult to give a pejorative meaning to

it. And because it was something not even a congressman could object to. Basically,

it sounded cool.

So that's the origin of the name dynamic programming. So why is the called that?
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Who knows. I mean, now you know. But it's not-- it's a weird term. Just take it for

what it is. It may make some kind of sense, but--

All right. So we are going to start with this example of how to compute Fibonacci

numbers. And maybe before we actually start I'm going to give you a sneak peak of

what you can think of dynamic programming as. And this equation, so to speak, is

going to change throughout today's lecture. In the end we'll settle on a sort of more

accurate perspective.

The basic idea of dynamic programming is to take a problem, split it into

subproblems, solve those subproblems, and reuse the solutions to your

subproblems. It's like a lesson in recycling. So we'll see that in Fibonacci numbers.

So you remember Fibonacci numbers, right? The number of rabbits you have on

day n, if they reproduce. We've mentioned them before, we're talking about AVL

trees, I think. So this is the usual-- you can think of it as a recursive definition or

recurrence on Fibonacci numbers. It's the definition of what the nth Fibonacci

number is.

So let's suppose our goal-- an algorithmic problem is, compute the nth Fibonacci

number. And I'm going to assume here that that fits in a word. And so basic

arithmetic, addition, whatever's constant time per operation. So how do we do it?

You all know how to do it. Anyways-- but I'm going to give you the dynamic

programming perspective on things. So this will seem kind of obvious, but it is--

we're going to apply exactly the same principles that we will apply over and over in

dynamic programming. But here it's in a very familiar setting.

So we're going to start with the naive recursive algorithm. And that is, if you want to

compute the nth Fibonacci number, you check whether you're in the base case. I'm

going to write it this way. So f is just our return value. You'll see why I write it this

way in a moment. Then you return f. In the base case it's 1, otherwise you

recursively call Fibonacci of n minus 1. You recursively call Fibonacci of n minus 2.

Add them together, return that. This is a correct algorithm.
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Is it a good algorithm? No. It's very bad. Exponential time. How do we know it's

exponential time, other than from experience? Well, we can write the running time

as recurrence. T of n represents the time to compute the nth Fibonacci number.

How can I write the recurrence? You're gonna throwback to the early lectures,

divide and conquer. I hear whispers. Yeah?

AUDIENCE: [INAUDIBLE].

PROFESSOR: Yeah. T of n minus 1 plus t of n minus 2 plus constant. I don't know how many you

have by now. So to create the nth Fibonacci number we have to compute the n

minus first Fibonacci number, and the n minus second Fibonacci number. That's

these two recursions. And then we take constant time otherwise. We do constant

number of additions, comparisons. Return all these operations-- take constant time.

So that's a recurrence.

How do we solve this recurrence? Well one way is to see this is the Fibonacci

recurrence. So it's the same thing. There's this plus whatever. But in particular, this

is at least the nth Fibonacci number. And if you know Fibonacci stuff, that's about

the golden ratio to the nth power. Which is bad. We had a similar recurrence in AVL

trees.

And so another way to solve it-- it's just good review-- say, oh well, that's at least 2

times t of n minus 2. Because it's going to be monotone. The bigger n is, the more

work you have to do. Because to do the nth thing you have to do the n minus first

thing. So we could just reduce t of n minus 1 to t of n minus 2. That will give us a

lower bound.

And now these two terms-- now this is sort of an easy thing. You see that you're

multiplying by 2 each time. You're subtracting 2 from n each time. How many times

can I subtract 2 from n? N/2 times, before I get down to a constant. And so this is

equal to 2 to the n over 2-- I mean, times some constant, which is what you get in

the base case. So I guess I should say theta. This thing is theta that. OK. So it's at

least that big. And the right constant is phi. And the base of the exponent.
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OK. So that's a bad algorithm. We all know it's a bad algorithm. But I'm going to give

you a general approach for making bad algorithms like this good. And that general

approach is called memoization. We'll go over here. And this is a technique of

dynamic programming.

So I'm going to call this the memoized dynamic programming algorithm. So did I

settle on using memo in the notes? Yeah. The idea is simple.

Whenever we compute a Fibonacci number we put it in a dictionary. And then when

we need to compute the nth Fibonacci number we check, is it already in the

dictionary? Did we already solve this problem? If so, return that answer. Otherwise,

computer it. You'll see the transformation is very simple.

OK. These two lines are identical to these two lines. So you can see how the

transformation works in general. You could do this with any recursive algorithm. The

memoization transformation on that algorithm-- which is, we initially make an empty

dictionary called memo. And before we actually do the computation we say, well,

check whether this version of the Fibonacci problem, computing f of n, is already in

our dictionary.

So if that key is already in the dictionary, we return the corresponding value in the

dictionary. And then once we've computed the nth Fibonacci number, if we bothered

to do this, if this didn't apply, then we store it in the memo table. So we say well, if

you ever need to compute f of n again, here it is. And then we return that value.

So this is a general procedure. It can apply to any recursive algorithm with no side

effects I guess, technically. And it turns out, this makes the algorithm efficient. Now

there's a lot of ways to see why it's efficient. In general, maybe it's helpful to think

about the recursion tree.

So if you want to compute fn in the old algorithm, we compute fn minus 1 and fn

minus two completely separately. To compute fn minus 1 we compute fn minus 2

and fn minus 3. To compute fn minus 2 we compute fn minus 3 and fn minus 4. And

so on. And you can see why that's exponential in n. Because we're only
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decrementing n by one or two each time.

But then you observe, hey, these fn minus 3's are the same. I should really only

have to compute them once. And that's what we're doing here. The first time you

call fn minus 3, you do work. But once it's done and you go over to this other

recursive call, this will just get cut off. There's no tree here. Here we might have

some recursive calling. Here we won't, because it's already in the memo table. In

fact, this already happens with fn minus 2. This whole tree disappears because fn

minus 2 has already been done.

OK. So it's clear why it improves things. So in fact you can argue that this call will be

free because you already did the work in here. But I want to give you a very

particular way of thinking about why this is efficient, which is following.

So you could write down a recurrence for the running time here. But in some sense

recurrences aren't quite the right way of thinking about this because recursion is

kind of a rare thing. If you're calling Fibonacci of some value, k, you're only going to

make recursive calls the first time you call Fibonacci of k. Because henceforth,

you've put it in the memo table you will not recurse.

So you can think of there being two versions of calling Fibonacci of k. There's the

first time, which is the non-memoized version that does recursion-- does some

work. And then every time henceforth you're doing memoized calls of Fibonacci of

k, and those cost constant time. So the memoized calls cost constant time. So we

can think of them as basically free.

That's when you call Fibonacci of n minus 2, because that's a memoized call, you

really don't pay anything for it. I mean, you're already paying constant time to do

addition and whatever. So you don't have to worry about the time. There's no

recursion here. And then what we care about is that the number of non-memorized

calls, which is the first time you call Fibonacci of k, is n. No theta is even necessary.

We are going to call Fibonacci of 1. At some point we're going to call Fibonacci of 2

at some point, and the original call is Fibonacci of n. All of those things will be called
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at some point. That's pretty easy to see. But in particular, certainly at most this, we

never call Fibonacci of n plus 1 to compute Fibonacci of n. So it's at most n calls.

Indeed it will be exactly n calls that are not memoized. Those ones we have to pay

for.

How much do we have to pay? Well, if you don't count the recursion-- which is what

this recurrence does-- if you ignore recursion then the total amount of work done

here is constant. So I will say the non-recursive work per call is constant. And

therefore I claim that the running time is constant-- I'm sorry, is linear. Constant

would be pretty amazing.

This is actually not the best algorithm-- as an aside. The best algorithm for

computing the nth Fibonacci number uses log n arithmetic operations. So you can

do better, but if you want to see that you should take 6046.

OK. We're just going to get to linear today, which is a lot better than exponential. So

why linear? Because there's n non-memoize calls, and each of them cost constant.

So it's the product of those two numbers. This is an important idea. And it's so

important I'm going to write it down again in a slightly more general framework.

In general, in dynamic programming-- I didn't say why it's called memoization. The

idea is you have this memo pad where you write down all your scratch work. That's

this memo dictionary. And to memoize is to write down on your memo pad. I didn't

make it up. Another crazy term. It means remember. And then you remember all the

solutions that you've done. And then you reuse those solutions.

Now these solutions are not really a solution to the problem that I care about. The

problem I care about is computing the nth Fibonacci number. To get there I had to

compute other Fibonacci numbers. Why? Because I had a recursive formulation.

This is not always the way to solve a problem. But usually when you're solving

something you can split it into parts, into subproblems, we call them. They're not

always of the same flavor as your original goal problem, but there's some kind of

related parts.
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And this is the big challenge in designing a dynamic program, is to figure out what

are the subproblems. Let's say, the first thing I want to know about a dynamic

program, is what are the subproblems. Somehow they are designed to help solve

your actual problem.

And the idea of memoization is, once you solve a subproblem, write down the

answer. If you ever need to solve that same problem again you reuse the answer.

So that is the core idea. And so in this sense dynamic programming is essentially

recursion plus memoization.

And so in this case these are the subproblems. Fibonacci of 1 through Fibonacci of

n. The one we care about is Fibonacci of n. But to get there we solve these other

subproblems. In all cases, if this is the situation-- so for any dynamic program, the

running time is going to be equal to the number of different subproblems you might

have to solve, or that you do solve, times the amount of time you spend per

subproblem.

OK. In this situation we had n subproblems. And for each of them we spent constant

time. And when I measure the time per subproblem which, in the Fibonacci case I

claim is constant, I ignore recursive calls. That's the key. We don't have to solve

recurrences with dynamic programming. Yay. No recurrences necessary. OK. Don't

count recursions.

Obviously, don't count memoized recursions. The reason is, I only need to count

them once. After the first time I do it, it's free. So I count how many different

subproblems do I need to do? These are they going to be the expensive recursions

where I do work, I do some amount of work, but I don't count the recursions

because otherwise I'd be double counting. I only want to count each subproblem

once, and then this will solve it.

So a simple idea. In general, dynamic programming is a super simple idea. It's

nothing fancy. It's basically just memoization. There is one extra trick we're going to

pull out, but that's the idea.
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All right. Let me tell you another perspective. This is the one maybe most commonly

taught. Is to think of-- but I'm not a particular fan of it. I really like memoization. I

think it's a simple idea. And as long as you remember this formula here, it's really

easy to work with. But some people like to think of it this way. And so you can pick

whichever way you find most intuitive.

Instead of thinking of a recursive algorithm, which in some sense starts at the top of

what you want to solve and works its way down, you could do the reverse. You

could start at the bottom and work your way up. And this is probably how you

normally think about computing Fibonacci numbers or how you learned it before. I'm

going to write it in a slightly funny way.

The point I want to make is that the transformation I'm doing from the naive

recursive algorithm, to the memoized algorithm, to the bottom-up algorithm is

completely automated. I'm not thinking, I'm just doing. OK. It's easy. This code is

exactly the same as this code and as that code, except I replaced n by k. Just

because I needed a couple of different n values here. Or I want to iterate over n

values.

And then there's this stuff around that code which is just formulaic. A little bit of

thought goes into this for loop, but that's it. OK. This does exactly the same thing as

the memoized algorithm. Maybe it takes a little bit of thinking to realize, if you unroll

all the recursion that's happening here and just write it out sequentially, this is

exactly what's happening.

This code does exactly the same additions, exactly the same computations as this.

The only difference is how you get there. Here we're using a loop, here we're using

recursion. But the same things happen in the same order. It's really no difference

between the code. This code's probably going to be more efficient practice because

you don't make function calls so much.

In fact I made a little mistake here. This is not a function call, it's just a lookup into a

table. Here I'm using a hash table to be simple, but of course you could use an

9



array. But they're both constant time with good hashing. All right. So is it clear what

this is doing? I think so. I think I made a little typo.

So we have to compute-- oh, another typo. We have to compute f1 up to fn, which

in python is that. And we compute it exactly how we used to. Except now, instead of

recursing, I know that when I'm computing the k Fibonacci number-- man. So many

typos.

AUDIENCE: [LAUGHTER]

PROFESSOR: You guys are laughing. When I compute the kth Fibonacci number I know that I've

already computed the previous two. Why? Because I'm doing them in increasing

order. Nothing fancy.

Then I can just do this and the solutions will just be waiting there. If they work, I'd

get a key error. So I'd know that there's a bug. But in fact, I won't get a key error. I

will have always computed these things already. Then I store it in my table. Then I

iterate. Eventually I've solved all the subproblems, f1 through fn. And the one I

cared about was the nth one.

OK. So straightforward. I do this because I don't really want to have to go through

this transformation for every single problem we do. I'm doing it in Fibonacci because

it's super easy to write the code out explicitly. But you can do it for all of the dynamic

programs that we cover in the next four lectures.

OK. I'm going to give you now the general case. This was the special Fibonacci

version. In general, the bottom-up does exactly the same computation as the

memoized version. And what we're doing is actually a topological sort of the

subproblem dependency DAG.

So in this case, the dependency DAG is very simple. In order to compute-- I'll do it

backwards. In order to compute fn, I need to know fn minus 1 and fn minus 2. If I

know those I can compute fn. Then there's fn minus 3, which is necessary to

compute this one, and that one, and so on. So you see what this DAG looks like.
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Now, I've drawn it conveniently so all the edges go left to right. So this is a

topological order from left to right. And so I just need to do f1, f2, up to fn in order.

Usually it's totally obvious what order to solve the subproblems in. But in general,

what you should have in mind is that we are doing a topological sort. Here we just

did it in our heads because it's so easy. And usually it's so easy. It's just a for loop.

Nothing fancy.

All right. I'm missing an arrow. All right. Let's do something a little more interesting,

shall we? All right. One thing you can do from this bottom-up perspective is you can

save space. Storage space in the algorithm. We don't usually worry about space in

this class, but it matters in reality.

So here we're building a table size, n, but in fact we really only need to remember

the last two values. So you could just store the last two values, and each time you

make a new one delete the oldest. so by thinking a little bit here you realize you only

need constant space. Still linear time, but constant space. And that's often the case.

From the bottom-up perspective you see what you really need to store, what you

need to keep track of.

All right. I guess another nice thing about this perspective is, the running time is

totally obvious. This is clearly constant time. So this is clearly linear time. Whereas,

in this memoized algorithm you have to think about, when's it going to be

memoized, when is it not? I still like this perspective because, with this rule, just

multiply a number of subproblems by time per subproblem, you get the answer. But

it's a little less obvious than code like this. So choose however you like to think

about it.

All right. We move onto shortest paths. So I'm again, as usual, thinking about single-

source shortest paths. So we want to compute the shortest pathway from s to v for

all v. OK. I'd like to write this initially as a naive recursive algorithm, which I can then

memoize, which I can then bottom-upify. I just made that up.

So how could I write this as a naive recursive algorithm? It's not so obvious. But first

I'm going to tell you how, just as an oracle tells you, here's what you should do. But
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then we're going to think about-- go back, step back. Actually, it's up to you. I could

tell you the answer and then we could figure out how we got there, or we could just

figure out the answer. Preferences? Figure it out. All right. Good. No divine

inspiration allowed.

So let me give you a tool. The tool is guessing. This may sound silly, but it's a very

powerful tool. The general idea is, suppose you don't know something but you'd like

to know it. So what's the answer to this question? I don't know. Man, I really want a

cushion. How am I going to answer the question? Guess. OK?

AUDIENCE: [LAUGHTER]

PROFESSOR: It's a tried and tested method for solving any problem. I'm kind of belaboring the

point here. The algorithmic concept is, don't just try any guess. Try them all. OK?

AUDIENCE: [LAUGHTER]

PROFESSOR: Also pretty simple. I said dynamic programming was simple. OK. Try all guesses.

This is central to the dynamic programming. I know it sounds obvious, but if I want

to fix my equation here, dynamic programming is roughly recursion plus

memoization. This should really be, plus guessing. Memoization, which is obvious,

guessing which is obvious, are the central concepts to dynamic programming. I'm

trying to make it sound easy because usually people have trouble with dynamic

programming. It is easy.

Try all the guesses. That's something a computer can do great. This is the brute

force part. OK. But we're going to do it carefully. Not that carefully. I mean, we're

just trying all the guesses. Take the best one. That's kind of important that we can

choose one to be called best. That's why dynamic programming is good for

optimization problems. You want to maximize something, minimize something, you

try them all and then you can forget about all of them and just reduce it down to one

thing which is the best one, or a best one.

OK. So now I want you to try to apply this principle to shortest paths. Now I'm going

to draw a picture which may help. We have the source, s, we have some vertex, v.
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We'd like to find the shortest-- a shortest path from s to v.

Suppose I want to know what this shortest path is. Suppose this was it. You have an

idea already? Yeah.

AUDIENCE: What you could do is you could look at everywhere you can go from s. [INAUDIBLE]

shortest path of each of those notes.

PROFESSOR: Good. So I can look at all the places I could go from s, and then look at the shortest

paths from there to v. So we could call this s prime. So here's the idea. There's

some hypothetical shortest path. I don't know where it goes first, so I will guess

where it goes first. I know the first edge must be one of the outgoing edges from s. I

don't know which one. Try them all. Very simple idea. Then from each of those, if

somehow I can compute the shortest path from there to v, just do that and take the

best choice for what that first edge was. So this would be the guess first edge

approach.

It's a very good idea. Not quite the one I wanted because unfortunately that

changes s. And so this would work, it would just be slightly less efficient if I'm solving

single-source shortest paths. So I'm going to tweak that idea slightly by guessing

the last edge instead of the first edge. They're really equivalent. If I was doing this

I'd essentially be solving a single-target shortest paths, which we talked about

before.

So I'm going to draw the same picture. I want to get to v. I'm going to guess the last

edge, call it uv. I know it's one of the incoming edges to v-- unless s equals v, then

there's a special case. As long as this path has length of at least 1, there's some

last edge. What is it? I don't know. Guess. Guess all the possible incoming edges to

v, and then recursively compute the shortest path from s to u. And then add on the

edge v.

OK. So what is this shortest path? It's delta of s comma u, which looks the same. It's

another subproblem that I want to solve. There's v subproblems here I care about. .

So that's good. I take that. I add on the weight of the edge uv. And that should
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hopefully give me delta of s comma v.

Well, if I was lucky and I guessed the right choice of u. In reality, I'm not lucky. So I

have to minimize over all edges uv. So this is the-- we're minimizing over the choice

of u. V is already given here. So I take the minimum over all edges of the shortest

path from s to u, plus the weight of the edge uv. That should give me the shortest

path because this gave me the shortest path from s to u. Then I added on the edge

I need to get there.

And wherever the shortest path is, it uses some last edge, uv. There's got to be

some choice of u that is the right one. That's the good guess that we're hoping for.

We don't know what the good guess is so we just try them all. But whatever it is, this

will be the weight of that path. It's going to take the best path from s to u because

sub paths are shortest paths are shortest paths. Optimal substructure. So this part

will be delta of su. This part is obviously w of uv. So this will give the right answer.

Hopefully. OK. It's certainly going to-- I mean, this is the analog of the naive

recursive algorithm for Fibonacci. So it's not going to be efficient if I-- I mean, this is

an algorithm, right? You could say-- this is a recursive call. We're going to treat this

as recursive call instead of just a definition. Then this is a recursive algorithm. How

good or bad is this recursive algorithm?

AUDIENCE: Terrible.

PROFESSOR: Terrible. Very good. Very bad, I should say. It's definitely going to be exponential

without memoization. But we know. We know how to make algorithms better. We

memoize. OK. So I think you know how to write this as a memoized algorithm.

To define the function delta of sv, you first check, is s comma v in the memo table?

If so return that value. Otherwise, do this computation where this is a recursive call

and then stored it in the memo table. OK. I don't think I need to write that down. It's

just like the memoized code over there. Just there's now two arguments instead of

one. In fact, s isn't changing. So I only need to store with v instead of s comma v.

Is that a good algorithm? I claim memoization makes everything faster. Is that a fast
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algorithm? Not so obvious, I guess. Yes? How many people think, yes, that's a good

algorithm?

AUDIENCE: Better.

PROFESSOR: Better. Definitely better. Can't be worse. How many people think it's a bad algorithm

still? OK. So three for yes, zero for no. How many people aren't sure? Including the

yes votes? Good.

All right. It's not so tricky. Let me draw you a graph. Something like that. So we

wanted to commit delta of s comma v. Let me give these guys names, a and b. So

we compute delta of s comma v. To compute that we need to know delta of s

comma a and delta of s comma v. All right? Those are the two ways-- sorry, actually

we just need one. Only one incoming edge to v. So its delta of s comma a. Sorry-- I

should have put a base case here too. Delta of s comma s equals 0.

OK. Delta of s comma a plus the edge. OK. There is some shortest path to a. To

compute the shortest path to a we look at all the incoming edges to a. There's only

one. So delta of s comma b. Now I want to compute the shortest paths from b. Well,

there's two ways to get to b. One of them is delta of s comma b-- sorry, s comma s.

Came from s. The other way is delta of s comma v. Do you see a problem? Yeah.

Delta of s comma v is what we were trying to figure out.

Now you might say, oh, it's OK because we're going to memoize our answer to delta

s comma v and then we can reuse it here. Except, we haven't finished computing

delta of s comma v. We can only put it in the memo table once we're done. So when

this call happens the memo table has not been set. And we're going to do the same

thing over and over and over again. This is an infinite algorithm. Oops. Not so hot.

So it's going to be infinite time on graphs with cycles.

OK. For DAGs, for acyclic graphs, it actually runs in v plus e time. This is the good

case. In this situation we can use this formula. The time is equal to the number of

subproblems times the time per subproblem. So I guess we have to think about that

a little bit. Where's my code? Here's my code. Number of subproblems is v. There's
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v different subproblems that I'm using here. I'm always reusing subproblems of the

form delta s comma something. The something could be any of the v vertices.

How much time do I spend per subproblem? That's a little tricky. It's the number of

incoming edges to v. So time for a sub problem delta of sv is the indegree of v. The

number of incoming edges to v. So this depends on v. So I can't just take a

straightforward product here. What this is really saying is, you should sum up over

all sub problems of the time per sub problem.

So total time is the sum over all v and v, the indegree of v. And we know this is

number of edges. It's really-- so indegree plus 1, indegree plus 1. So this is v plus v.

OK. Handshaking again.

OK. Now we already knew an algorithm for shortest paths and DAGs. And it ran a v

plus e time. So it's another way to do the same thing. If you think about it long

enough, this algorithm memoized, is essentially doing a depth first search to do a

topological sort to run one round of Bellman-Ford. So we had topological sort plus

one round of Bellman-Ford. This is kind of it all rolled into one. This should look kind

of like the Bellman Ford relaxation step, or shortest paths relaxation step. It is. This

min is really doing the same thing. So it's really the same algorithm. But we come at

it from a different perspective.

OK. But I claim I can use this same approach to solve shortest paths in general

graphs, even when they have cycles. How am I going to do that? DAGs seem fine--

oh, what was the lesson learned here? Lesson learned is that subproblem

dependencies should be acyclic. Otherwise, we get an infinite algorithm. For

memoization to work this is what you need. It's all you need.

OK. We've almost seen this already. Because I said that, to do a bottom up

algorithm you do a topological sort of this subproblem dependency DAG. I already

said it should be acyclic. OK. We just forgot. I didn't tell you yet. So for that to work it

better be acyclic. For DP to work, for memoization to work, it better be acyclic. If

you're acyclic then this is the running time. So that's all general.
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OK. So somehow I need to take a cyclic graph and make it acyclic. We've actually

done this already in recitation. So if I have a graph-- let's take a very simple cyclic

graph. OK. One thing I could do is explode it into multiple layers. We did this on quiz

two in various forms. It's like the only cool thing you can do with shortest paths, I

feel like. If you want to make a shortest path problem harder, require that you

reduce your graph to k copies of the graph.

I'm going to do it in a particular way here-- which I think you've seen in recitation--

which is to think of this axis as time, or however you want, and make all of the

edges go from each layer to the next layer. This should be a familiar technique. So

the idea is, every time I follow an edge I go down to the next layer. This makes any

graph acyclic. Done. What in the world does this mean? What is it doing? What

does it mean? Double rainbow. All right.

AUDIENCE: [LAUGHTER]

PROFESSOR: So-- I don't know how I've gone so long in the semester without referring to double

rainbow. It used to be my favorite. All right.

So here's what it means. Delta sub k of sv. I'm going to define this first-- this is a

new kind of subproblem-- which is, what is the shortest-- what is the weight of the

shortest s to v path that uses, at most, k edges.

So I want it to be shortest in terms of total weight, but I also want it to use few edges

total. So this is going to be 0. In some sense, if you look at-- so here's s and I'm

always going to make s this. And then this is going to be v in the zero situation. This

is going to be v in the one situation, v-- so if I look at this v, I look at the shortest

path from s to v, that is delta sub 0 of sv. So maybe I'll call this v sub 0, v sub 1, v

sub 2.

OK. Shortest path from here to here is, there's no way to get there on 0 edges.

Shortest path from here to here, that is the best way to get there with, at most, one

edge. Shortest path from here to here-- well, if I add some vertical edges too, I

guess, cheating a little bit. Then this is the best way to get from s to v using at most
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two edges. And then you get a recurrence which is the min over all last edges. So

I'm just copying that recurrence, but realizing that the s to u part uses one fewer

edge. And then I use the edge uv.

OK. That's our new recurrence. By adding this k parameter I've made this

recurrence on subproblems acyclic. Unfortunately, I've increased the number of

subproblems. The number of subproblems now is v squared. Technically, v times v

minus 1. Because I really-- actually, v squared. Sorry. I start at 0. And what I care

about, my goal, is delta sub v minus 1 of sv. Because by Bellman-Ford analysis I

know that I only care about simple paths, paths of length at most v minus 1. I'm

assuming here no negative weight cycles. I should've said that earlier.

If you assume that, then this is what I care about. So k ranges from 0 to v minus 1.

So there are v choices for k. There are v choices for v. So the number of

subproblems is v squared. How much time do I spend per subproblem? Well, the

same as before. The indegree-- where did I write it? Up here-- the indegree of that

problem. So what I'm really doing is summing over all v of the indegree. And then I

multiply it by v. So the running time, total running time is ve. Sound familiar? This is

Bellman-Ford's algorithm again. And this is actually where Bellman-Ford algorithm

came from is this view on dynamic programming. So we're seeing yet another way

to do Bellman-Ford. It may seem familiar. But in the next three lectures we're going

to see a whole bunch of problems that can succumb to the same approach. And

that's super cool.
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