
MITOCW | 21. DP III: Parenthesization, Edit Distance, Knapsack

The following content is provided under a Creative Commons license. Your support

will help MIT OpenCourseWare continue to offer high quality educational resources

for free. To make a donation or view additional materials from hundreds of MIT

courses, visit MIT OpenCourseWare at ocw.mit.edu.

PROFESSOR: Today we're going to solve three problems, a problem called Parenthesization, a

problem called Edit Distance, which is used in practice a lot, for things like

comparing two strings of DNA, and a problem called Knapsack, just about how to

pack your bags. And we're going to get a couple of general ideas, one is about how

to deal with string problems in general with dynamic programming. The first two and

our previous lecture are all about strings, certain sense or sequences, and we're

going to introduce a new concept, kind of like polynomial time, but only kind of, sort

of-- pseudo polynomial time.

Remember, dynamic programming in five easy steps. You define what your sub

problems are and count how many there are, to solve a sub problem, you guess

some part of the solution, where there's not too many different possibilities for that

guess. You count them, better be polynomial. Then you, using that guess-- this is

sort of optional, but I think it's a useful way to think about things. You write a

recurrence relating the solution to the subproblem you want to solve, in terms of

smaller subproblem, something that you already know how to solve, but it's got to

be within this list. And when you do that, you're going to get a min or a max of a

bunch of options, those correspond to your guesses. And you get some running

time, in order to compute that recurrence, ignoring the recursion, that's time for

subproblem. Then, to make a dynamic program, you either just make that a

recursive algorithm and memoize everything, or you write the bottom up version of

the DP. They do exactly the same computations, more or less, and you need to

check that this recurrence is acyclic, that you never end up depending on yourself,

otherwise these will be infinite algorithms or incorrect algorithms. Either way is bad.

From the bottom up, you really like to explicitly know a topological order on the

subproblems, and that's usually pretty easy, but you've got make sure that it's

1



acyclic. And then, to compute the running time of the algorithm, you just take the

number of subproblems from part 1 and you multiply it by the time it takes per

subproblem, ignoring recursion, in part 3. That gives you your running time. I've

written this formula by now three times are more, remember it. We use it all the

time. And then you need to double check that you can actually solve the original

problem you cared about, either it was one of your subproblems or a combination of

them. So that's what we're going to do three times today.

One of the hardest parts in dynamic programming is step 1, defining your

subproblems. Usually if you do that right, it becomes-- with some practice, step 2 is

pretty easy. Step 1 is really where most of the insight comes in, and step 3 is usually

trivial, once you know 1 and 2. Once you realize 1 and 2 will work, the recurrence is

clear. So I want to give you some general tips for step 1, how to choose

subproblems, and we're going to start with problems that involve strings or

sequences as input, where the problem, the input to the problem is string or

sequence. Last class we saw text justification, where the input was a sequence of

words, and we saw Blackjack, where the input was a sequence of cards. Both of

these are examples, and if you look at them, in both cases we used suffixes, what

do I call it, x, as our subproblems. If x was our sequence, we did all the suffixes, I

equals zero up to the length of the thing. So they're about n, n plus 1, such

subproblems. This is good. Not very many of them, and usually if you're plucking

things off the beginning of the string or of the sequence, then you'll be left with the

suffix. If you always are plucking from the beginning, you always have suffixes, you'll

stay in this class, and that's good, because you always want a recurrence that

relates, in terms of the same subproblems that you know. Sometimes it doesn't

work. Sometimes prefixes are more convenient. These are usually pretty much

identical, but if you're plucking off from the end instead of the beginning, you'll end

up with prefixes, not suffixes. Both of these have linear size, so they're good news,

quite efficient. Another possibility when that doesn't work, we're going to see an

example of that today, is you do all substrings. So I don't mean subsequences, they

have to be consecutive substrains, i through j. And now for all i and j. How many of

these are there? For a string of length n? N squared. So this one is n squared, the

2



others are linear. Out of room here. Theta n. So you obviously you prefer to use

these subproblems because there's fewer of them, but if sometimes they don't

work, then use this one, still polynomial, still pretty good. This will get you through

most DP's. It's pretty simple, but very useful.

Let me define the next problem we consider. For each of them we're going to go

through the five steps. So the first problem for today is parenthesization. You're

given an associative expression, and you want to evaluate it in some order. So I'm

going to-- for associative expression, I'm going to think of matrix multiplication, and I

probably want to start at zero. So let's say you have n matrices, you want to

compute their product. So you remember matrix multiplication is not commutative, I

can't reorder these things. All I can do is, if I want to do it by sequence of pairwise

multiplications, is I get to choose where the parentheses are, and do whatever I

want for the parentheses, because it's associative. It doesn't matter where they go.

Now it turns out if you use straightforward matrix multiplication, really any algorithm

for matrix multiplication, it matters how you parenthesize. Some will be cheaper than

others, and we can use dynamic programming to find out which is best. So let me

draw a simple example.

Suppose I have a column vector times a row vector times a column vector. And

there are two ways to compute this product. One is like this, and the other is like

this. If I compute the product this way, it's every row times every column, and then

every row times every column, and every row times every column. This subresult is

a square matrix, so if these are-- say everything here is n, and this will be an n by n

matrix.

Then we multiply it by a vector and this computation has to take, if you do it well, it

will take theta n squared time, because I need to compute n squared values here,

and then it's n squared to do this final multiplication. Versus if I do it this way, I take

all the rows here, multiply them on all the columns here, it's a single number, and

then I multiply by this column. This will take linear time. So this is better

parenthesization than this one. Now, I don't even need to define in general for an x

by y matrix, times a y by z matrix, you can think about the running time of that

3



multiplication. Whatever the running time is, dynamic programming can solve this

problem, as long as it only depends on the dimensions of the matrices that you're

multiplying.

So for this problem, there's going to be the issue of which subproblems we use.

Now we have a sequence of matrices here, so we naturally think of these as

subproblems, but before we get to the subproblems, let me ask you, what you think

you should guess? Let's just say from the outset, if I give you this entire sequence,

what feature of the solution of the optimal solution would you like to guess? Can't

know the whole solution, because there's exponentially many ways to parenthesize.

What's one piece of it that you'd like to guess that will make progress? Any idea? It's

not so easy.

AUDIENCE: Well, wouldn't you need the last operation?

PROFESSOR: What's the last operation we're going to do, exactly. You might call it the outermost

multiplication or the last multiplication. So that's going to look like we somehow

multiply a 0 through ak minus 1, and then we somehow multiply aK through an

minus 1, and this is the last one. So now we have two subproblems. Somehow we

want to multiply this, somehow-- I mean, there's got to be some last thing you do. I

don't know what it is, so just guess it. Try all possibilities for k, it's got to be one of

them, take the best. If somehow we know the optimal way to do a0 to k minus 1 and

the optimal way to ak to an minus 1, then we're golden. Now, this looks like a prefix,

this looks like a suffix. So do you think we can just combine subproblems, suffixes

and prefixes? How many people think yes? A few? How many people think no, OK,

why?

AUDIENCE: So, for example if you split, if you were to split, like [INAUDIBLE]?

PROFESSOR: Yeah. The very next thing we're going to do is recurse on this subproblem, recurse

on this subproblem. When we recurse here, we're going to split it into a0 to ak prime

minus 1, and ak prime minus 1, or ak prime to ak minus 1. We're going to consider

all possible partitions, and this thing, from ak prime to ak minus 1, is not a prefix or a

suffix. What is it? A substring. There's only one thing left. I claim these are usually

4



enough, and in this case substrings will be enough.

But this is how you can figure out that, ah, I'm not staying within the family prefixes,

I'm not staying within the family suffixes. In general, you never use both of these

together. If you're going to need both, you probably need substrings. So if just

suffixes work, fine. If just prefixes work, fine, but otherwise you're probably going to

need substrings. That's just a rule of thumb, of course. Cool. So, part 1 subproblem

is going to be the optimal evaluation parenthesization of ai to aj minus 1.

So that's part of the problem here. We want to do a0 to n minus 1. So in general,

let's just take some substring in here and say, well what's the best way to multiply

that, and that's the sorts of subproblems we're getting if we use this guess. And if

you start with a substring and you do this, you will still remain within a substring, so

actually I have to revise this slightly.

Now we're going from ai-- to solve this subproblem, which is what we need to do in

the guessing step, we start from ai, we go to some guest place, ak minus 1, then

from ak up to aj minus 1. This is the i colon j subproblem. So we guess some point

in the middle, some choice for k. The number of choices for k is-- number of

possible choices for this guess, so we have to try all of them, is like order j minus i

plus 1. I put order in case I'm off by 1 or something. But in particular this is

[INAUDIBLE]. And that's all we'll need. So that's the guess.

Now we go to step 3, which is the recurrence. And this-- we're going to do this over

and over again. Hopefully by the end, it's really obvious how to do this recurrence.

Let me just fix my notation, we're going to use dp, I believe. For whatever reason, in

my notes I often write dp of ij. This is supposed to be the solution to the subproblem

i colon j.

I want to write it recursively, in terms of smaller subproblems, and I want to minimize

the cost, so I'm going to write a min overall. And for each choice of k, so there's

going to be a for loop, I'm going to use Python notation here with iterators. So k is

going to be in the range, I think range ij is correct. I'm going to double check there's

no off by 1's here. Says i plus 1j. I think that's probably right.

5



Once I choose where k is, where I'm going to split my multiplication, I do the cost for

i up to k, that's the left multiplication, plus the cost for k up to j, plus-- so those are

the two recursive multiplications. So then I also have to do this outermost one. So

how much does that cost? Well, it's something, so cost of the product ai colon k

times the product ak colon j. So I'm assuming I can compute this cost, not even

going to try to write down a general formula, you could do it, it's not hard, it's like

xyz.

For a standard matrix multiplication algorithm. But whatever algorithm you're using,

assuming you could figure out the dimensions of this matrix, it doesn't matter how

it's computed, the dimensions will always be the same. You compute the

dimensions of this matrix that will result from that product, it's always going to be the

first dimension here, with the last dimension there. And it's constant time, you know

that.

And then if you can figure out the cost of a multiplication in constant time, just

knowing the dimensions of these matrices, then you could plug this in to this

dynamic program, and you will get the optimal solution. This is magically

considering all possible parenthesizations of these matrices, but magically it does it

in polynomial time. Because the time for subproblem here--

We're spending constant time for each iteration of this for loop, because this is a

constant time just computing the cost. These are free recursive calls, so it's

dominated by the length of the for loop, which we already said was order n, so it's

order n time for subproblem, ignoring recursions. And so when we put this together,

the total time is going to be the number of some problems, which I did not write.

The number of problems in step 1 is n squared, that's what we said over here, for

substrings. So running time is number of subproblems, which is n squared, times

linear for each, and so it's order n cubed, it's actually theta n cubed. So polynomial

time, much better than trying all possible parenthesizations, they're about 4 to the n

parenthesizations, that's a lot. Topological order here is a little more interesting, if

you think about that.

6



I can tell you, for suffixes, topological order is almost always right to left. And for

prefixes, it's almost always left to right, for increasing i, decreasing i. For substrings,

what do you think it is? Or for this situation in particular? In what order should I

evaluate these subproblems?

AUDIENCE: [INAUDIBLE].

PROFESSOR: This is the running time to determine the best way to multiply-- that's right. So yeah,

it's worth checking, because we also have to do the multiplication. But if you imagine

this n, the number of matrices you're multiplying is probably much smaller than their

sizes. In that situation, this will be tiny, whereas the time to actually do the

multiplication, that's what's being computed by the DP, hopefully that's much larger,

otherwise you're kind of wasting your time doing the DP.

But hey, at least you could tell somebody that you did it optimally. But it gets into a

fun issue of cost of planning verses execution, but we're not really going to worry

about that here. So, in what order should I evaluate this recurrence, in order to-- I

want, when I'm evaluating DP of ij, I've already done DP of ik and DP of kj, and this

is what you need for bottom up execution. Yeah.

AUDIENCE: Small to large.

PROFESSOR: Small to large, exactly. We want to do increasing substring size. That's actually what

we're always doing for all of those subproblems over there. When I say all suffixes,

you go right to left. Well, that's because the rightmost suffix is nothing, and then you

build up a larger and larger strings, same thing here. Exercise, try to draw the DAG

for this picture. It's a little harder, but if you-- I mean you could basically imagine-- I'll

do it for you.

Here is, let's say-- well, at the top there's everything, the longest substring, that

would be from zero to n, that's everything. Then you're going to have n different

ways to have substrings of, or actually just two different ways, to have a slightly

smaller substring. At the bottom you have a bunch of substrings, which are the

length zero ones, and in between, like in the middle here, you're going to have a
7



much larger number.

And all these edges are pointed up, so you can compute all the length zero ones

without any dependencies and then just increasing in length. It's a little hard to see,

but in each case-- Yeah, ah, interesting. This is a little harder to formulate as a

regular shortest paths problem, because if you look at one of these nodes, it

depends on two different values, and you have to take the sum of both of them.

And then you also add the cost of that split. Cool. So this is the subproblem DAG,

you could draw it, but this DP is not shortest paths in that DAG. So perhaps dynamic

programming is not just shortest paths in a DAG, that's a new realization for me as

of right now.

OK. Some other things I forgot to do-- I didn't specify the base case. The base case

for that recurrence is when your string is of length 0 or even of length 1, because

when it's length 1, there's only one matrix, there's no multiplication to do, and so the

cost is zero. So you have something like dp of i, i plus 1 equals zero. That's the

base case. And then step 5, step 5 is what's the overall problem I want to solve, and

that's just dp from 0 to n, that's the whole string.

Any questions about that DP? I didn't write down, I didn't write down a memoized

recursive algorithm, you all know how to do that. Just do this for loop and put this

inside, that would be the bottom up one, or just write this with memoization, that

would be the recursive algorithm. It's totally easy once you have this recurrence. All

right, good.

How many people is this completely clear to? OK. How many people does it kind of

make sense? And how many people it doesn't make sense at all? OK, good.

Hopefully we're going to shift more towards the first category. It's a little magical,

how this guessing works out, but I think the only way to really get it is to see more

examples and write code to do it, that's-- the ladder is your problem set, examples

is what we'll do here.

So next problem we're going to solve. Dynamic programming is one of these things

8



that's really easy once you get it, but it takes a little while to get there. So edit

distance, we're going to make things a little harder. Now we're going to be given two

strings instead of just one. And I want to know the cheapest way to convert x into y.

I'm going to define what transform means. We're going to allow character edits. We

want to transform this string x into string y, so what character edits are we allowed?

Very simple, we're allowed to insert a character anywhere in the strength, we're

allowed to delete a character anywhere in the string, and we're allowed to replace a

character anywhere in the string, replace c with c prime.

Now, you could do a replacement by deleting c and inserting c that's, one way to do

it, but I'm going to imagine that in general someone tells me how much each of

these operations costs, and that cost may depend on the character you're inserting.

So deleting a character and then inserting a different character will cost one thing. It

will cost the sum of those two cost values. Replacing a character with another

character might be cheaper. It depends. Someone gives me a little table, saying for

this character, for letter a, it costs this much to insert, for letter b it costs this much

to insert, this much to delete, and there's a little matrix for, if I want to convert an a

into a b it costs this much to replace.

Imagine, if you will, you're trying to do a spelling correction, someone's typing on a

keyboard, and you have some model of, oh, well if I hit a, I might have meant to hit

an s, because s is right next to an a, and that's an easy mistake to make if you're

not touch typing, because it's on the same finger, or maybe you're shifted over by

one. So you can come up with some cost models, someone could do a lot of work

and research and whatnot and see what are typical typos, replacing one letter for

another, and then associate some cost for each character, for each pair characters,

what's the likelihood that that was the mistake?

I call that the cost, that's the unlikeliness. And then you want to minimize the sum of

costs, and so you want to find what was the least set of errors that would end up

with this word instead of this word. You do that on all words of your dictionary and

then you'll find the one that was most likely what you meant to type. And insertions

9



and deletions are, I didn't hit the key hard enough, or I hit it twice, or accidentally hit

a key because it was right next to another one, or whatever.

OK, so this is used for spelling correction. It's used for comparing DNA sequences,

and DNA sequences, if you have one strand of DNA, there's a lot of mutation--

some mutations are more likely than others. For example, c to a g mutation is more

common than c to an a mutation, and so you give this replacement a high cost, you

give this one a low cost, to represent this is more likely than this.

And then at a distance will give your measure of how similar two DNA strings are

evolutionarily. And you also get extra characters randomly inserted and deleted in

mutation. So, it's a simplified model of what happens in mutation, but still it's used a

lot. So all these are encompassed by edit distance.

Another problem encompassed by edit distance is the longest common

subsequence problem. And I have a fun example, which I spent some hours, way

back when, coming up with. I can't spell it, though. It's such a weird word.

Hieroglyphology is an English word and Michelangelo is another English word, if you

allow proper nouns, unlike Scrabble.

So, think of these as strings. This is x, this is y. What is the longest common

subsequence? So not substring, I get to choose-- I can drop any set of letters from

x, drop any set of letters from y, and I want them to, in the end, be equal. It's a

puzzle for you. While you're thinking about it, you can model this as an edit distance

problem, you just define the cost of an insert or a delete to be 1, and the cost of a

replace to be 0. So this is a c to c prime replacement.

It's going to be 0 if c equals c prime, and I guess infinity otherwise. You just don't

consider it in that situation. Can anyone find the longest common subsequence

here? It's in English word, that's a hint. So if you do this you're, basically trying to

minimize number of insertions and deletions. Insertions in x correspond to deletions

in y, and deletions in x correspond to deletions in x. So this is the minimum number

of deletions in both strings, so you end up with a common substring.

10



Because replacement says, I don't pay anything if the characters match exactly,

otherwise I pay everything. I'd never want to do this, so if there's a mismatch I have

to delete it. And so this model is the same thing as long as common subsequence. I

want to solve this more general problem, it's actually easier to solve the more

general problem, but in particular, you can use it to solve this tricky problem. Any

answers? Yeah. Hello. Very good. Hello is the longest common subsequence. You

can imagine how I found that. Searching for all English words that have "hello" as

the subsequence. That can also be done in polynomial time.

So how are we going to do this? Well, I'd like to somehow use subproblems for

strings, suffixes, prefixes, or substrings. But now I have two strings, that's kind of

annoying. But don't worry, we can do sort of dynamic programming simultaneously

over x and y. What we're going to do is look at suffixes of x and suffixes of y, and to

make our subproblems we need to combine all of those subproblems by

multiplication.

We need to think about both of them simultaneously. So subproblem is going to be

solve edit distance, edit distance problem on two different strings, a suffix of x and a

possibly different suffix of y. Because this is for all possible i and j choices. And so

the number of subproblems is?

AUDIENCE: N squared.

PROFESSOR: N squared, yes. If x is of length n and y is of length n, there's n choices for this, n

choices for that, and we have to do all of them as pairs, if there's n squared pairs. In

general, if they have different lengths, it's going to be the length of x times length of

y. It's quadratic. Good. So, next we need to guess something, step 2. This is maybe

not so obvious, let's see. You have here's x, starting at position i. You have y

starting at position j.

Somehow I need to convert x into y, I think it's probably better if I line these up,

even though in some sense they're not lined up, that's OK. I want to convert x into y.

What should I look at here? Well, I should look at the very first characters, because

we're looking at suffixes. We want to cut off first characters somehow. How could it--

11



what are the possible ways to convert, or to deal with the first character of x? What

are the possible things I could do? Given that, ultimately, I want the first character of

x to become the first character of y.

AUDIENCE: Delete [INAUDIBLE].

PROFESSOR: You could delete this character and then insert this one, yes. Other things? There's

a few possibilities. If you look at it right, there are three possibilities. And three

possibilities are insert, delete, or replace. So let's figure out how that's the case. I

could replace this character with that character, so that's one choice. That will make

progress. Once I do that, I can cross off those first characters and deal with the rest

of the substrings.

Let's think about insert and delete. If I wanted to insert, presumably, I need this

character at some point. So in order to make this character, if it's not going to come

from replacing this one, it's got to be from inserting that character right there. Once I

do that, I can cross out that newly inserted character in this one, and then I have all

of the string x from i onward still, but then I've removed one character from y, so

that's progress.

The other possibility is deletion, so maybe I delete this character, and then maybe I

insert it in the next step, but it could be this character matches that one, or maybe I

have to delete several characters before I get to one that matches, something. But I

don't know that, so that's hard to guess, because that would be more time to guess.

But I could say, well, this character might get deleted. If it gets deleted, that's it, it

gets deleted. And then somehow the rest of the x, from i plus 1 on, has to match

with all of y, from j on.

But those are the three possibilities, and in some sense capture all possibilities. So it

could be we replace xi with yj, and so that has some cost, which we're given. It

could be that we insert yj at the beginning, or it could be that we delete xi.

You can see that's definitely spanning all the possible operations we can do, and if

you think about it long enough, you will be convinced this really covers every

12



possible thing you can do. If you think about the optimal solution, it's got to do

something to make this first character. Either it does it by replacement or it does it

by an insertion. But if it inserts it later on, it's got to get this out of the way somehow,

and that's the deletion case. If it inserts it at the beginning, that's the insertion case,

if it just does a replacement, that's the replace case. Those are all possibilities for

the optimal solution.

Then you can write a recurrence, which is just a max of those things, those three

options. So I'm going to write, I guess, dp of ij, yes, of i,j, but now i,j is not a

substring. It's a suffix of x and a suffix of y, so it corresponds to this subproblem. If I

want to solve that subproblem, it's going to be the min of three options.

We've got the replace case, so it's going to be some cost of the replace, from xi to

yj. So that's a quantity which we're given. Plus the cost of the rest. So after we do

this replacement, we can cross off both those characters, and so we look at i plus 1

on for x, and j plus 1 onwards for y. So that's option 1. Then comma for the min.

Option 2 is we have the cost of insert yj. So that's also something we're given. Then

we add on what we have to do afterwards, which is we've just gotten rid of yj, so x

still has the entire string from i on, and y has a smaller string. Comma. Last option is

basically the same, cost of the delete, deleting xi, and then we have to add on DP of

i plus 1j.

Because here we did not advance y but we advanced x. It's crucial that we always

advance at least one of the strings, because that means we're making progress,

and indeed, if you want to jump to step 4, which is topological ordering-- sorry, I

reused my symbols here, some different symbols. Head back to step 4 of DP,

topological order.

Well, these are suffixes, and so I know with suffixes I like to go from the smaller

suffixes, which is the end, to the beginning. And, indeed, because we're always

increasing, we're always looking at later substrings, later suffixes, for one or the

other. It's enough to just do-- come over here. To just do that for both of the strings,

it doesn't really matter the order. So you can do for i equals x down to zero, for j

13



equals y down to zero, and that will work.

Now this is another dynamic programming you can think of as just shortest paths in

the DAG. The DAG is most easily seen as a two-dimensional matrix, where the i

index is between zero and length of x, and the j index is between zero and length of

y, and each of the cells in this matrix is a node in the DAG. That's one of our

subproblems, dp of ij. And it depends on these three adjacent cells.

The edges are like this. If you look at it, we have to check i plus 1, j plus 1, that's this

guy. We have to check ij plus 1, that's this guy. We have to check i plus 1j, that's this

guy. And so, as long as we compute the matrix this way, what I've done here is row

by row, bottom up. You could do it anti-diagonals, you could do it column by column

backwards, all of those will work because we're making progress towards the origin.

And so if you ever-- if you look up at a distance, most descriptions think about it in

the matrix form, but I think it's easier to think of it in this recursive form, whatever

your poison. But this is, again, shortest paths in a DAG. The original problem we

care about is dp of zero zero, the upper left corner.

So to be clear in the DAG, what you write here is like the cost of, the weight of that

edge is the cost of, I believe, a deletion. Deletion, oh sorry, it's an insertion.

Inserting that character, this one's a cost of deletion, this is a cost to replace, so you

just put those edge weights in, and then just do a shortest paths in the DAG, I think,

from this corner to this corner. And that will give you this, or you could just do this

for loop and do that in the for loop, same thing.

OK. What's the running time? Well, the number of subproblems here is x times y,

the running time for subproblem is? I'm assuming that I know these costs in

constant time, so what's the overall running time of that, evaluating that? Constant.

And so the overall running time is the number of subproblems times a constant

equals x times y. This is the best known algorithm for edit distance, no one knows

how to do any better. It's a big open problem whether you can. You can improve the

space a little bit, because we really only need to store the last row or the last

14



column, depending on the order you're evaluating things. To even get down to

linear space, as far as we know, we need quadratic time.

One more problem, are you ready? This one's going to blow your minds hopefully.

Because we're going to diverge from strings and sequences, kind of. So far

everything we've looked at involves one or two strings or sequences, except for

[INAUDIBLE]. That involved a graph, that was a little more exciting. But we'd already

seen that, so it wasn't that exciting.

OK, our last problem for today is knapsack. It's a practical problem. You're going

camping. You're going backpacking, I should say, and you can only afford to take

whatever you can fit on your back. You have some limit to capacity, let's say one

giant backpack is all you can carry.

Let's imagine it's the size of the backpack that matters, not the weight, but you could

reformulate this in terms of weight. And you've got a lot of stuff you want to bring.

Ideally you bring everything you own, that would be kind of nice, convenient, but it'd

be kind of heavy. So you're limited, you're not able to do that.

So you have a list of items and each of them has a size, si, and has a desire, a

value to you, how much you care about it, how much you need it on this trip. OK,

each item has two things, and the sizes are integers. This is going to be important.

It won't work without that assumption. And we have a knapsack, backpack,

whatever, I guess it's the British, but I don't know, I get confused. Growing up in

Canada, I use both, so it's very confusing. Knapsack of total size, S.

And what you'd like to do is choose a subset of the items. If you're lucky, the sum of

the si's fit within s, then you bring everything. But if you're not lucky, that's not

possible, you want to choose a subset of the items whose total size is less than or

equal to s, in order to maximize the sum of the values. So you want to maximize the

sum of values for a subset of items, of total size less than or equal to S.

You can imagine size as weights instead of size, not a big deal, or you could have

sizes and weights. All of these things generalize. But we're going to need that the

15



sizes/weights are integers. And so the items have to fit, because you can't cheat,

you can't have more things than what fit, but then you want to maximize the value.

How do we do this with dynamic programming? With difficulty. I don't have a ton of

time, so I think I'm going to tell you-- well, let's see. Start with guessing. This is the

easy part to this problem. We should also be thinking about subproblems at the

same time. Even though I said we're leaving sequences, in fact, we have a

sequence here, we have a sequence of items.

We don't actually care about the order of the items, but hey, they're in an order. If

they weren't, we could put them in an order, in an arbitrary order. We're going to

use that order, and we're going to look at suffixes of items. i colon of items. That's

helpful, because now it says, oh, well, we should be plucking off items from the

beginning. Starting with the i-th item, what should I decide about the i-th item,

relative to the optimal solution? What should I guess?

AUDIENCE: Is i included or not?

PROFESSOR: Is i included or not, exactly. Is item i in the subset or not. Two choices, easy. Of

course, those are the choices. If I do that for everybody, then I know the entire

subset. Somehow I need to be able to write and this is what's actually impossible if I

choose this as my subproblem.

I want to write DP of i, somehow, in terms of, I guess, DP of i plus 1. And we'd like to

do max, and either we don't put it in, in which case that's our value, or we put it in, in

which case we get an additional v i in value. OK, but we consume in size, and

there's no way to remember that we've consumed the size here.

We just called DP of i plus 1. In this case, it has everything, all this. In this case, we

lose si of S, but we can't represent that here. That's bad, this would be an incorrect

algorithm. I would always choose to put everything in, because it's not keeping track

of the size bound. There's no capital S in this formula, that's wrong. So, to fix that,

I'm going to write that again, but a subproblem is going to have more information,

it's going to have an index i, and it's going to have remaining capacity.

16



I'm going to call it capital X, at some integer at most S. We're assuming that the

sizes are all integers, so this is valid. The number of subproblems is equal to n, the

number of items, did I say there are n items? Now there are n items, times capital S,

really S plus 1, because I have to go down to zero. But n times S, different

subproblems. Now for each of them I can write a recurrence, and that is DP of i

comma s, is going to be the max of DP of i plus 1s.

This is the case where we don't include the items, so S stays the same. Actually I

should write x here, because it's not actually our original value of s. x is the general

situation. The other possibility is we include item i, and then we give DP of i plus 1.

We still consume item i. We now have x minus si as our new capacity, what remains

after we add in this item. And then we add on vi, because that's the value we gain

from putting that item in. That's it, that's the DP, pretty simple.

Let me say a little bit about the running time of this thing. Again, you check there's a

topological order and all that, it's in the notes. The total running time, we spend

constant time to evaluate this formula, so it's super easy. The number of

subproblems is the bottleneck. So it's n times s.

Is this polynomial time? You might guess from the outline of today that the answer is

no. This is not polynomial time. What this polynomial time mean? It's polynomial and

n, where n is the size of the input. What's the size of the input here? Well, we're

given n items, each with a size, each with a value. If you think of the sizes and

values as being single word items, then the size is n.

If you think of them as being ginormous values, at most, the size of this input is

going to be something like n times log s, because if you write it out in binary you

would need log s, bits to write down those numbers. But it is not n times s. This

would be the binary encoding of the input, but the running time is this. Now s is

exponential in log s, this is, at best, an exponential time algorithm. But it's really not

that bad if s is small, and so we call it pseudopolynomial time.

What does pseudopolynomial mean? It just means that your polynomial in n, the

input size, which might be this, and in the numbers that are in your input. Numbers

17



here means integers, basically, otherwise it's not really well defined. So in this case

we have a bunch of integers, but in particular we have s. And so there's S and the

si's. This is definitely polynomial in n and s. It is the product of n and S. So you think

of this as pseudoquadratic time, I guess? Because it's quadratic, but one of the

things is pseudo, meaning it is one of the numbers in the input.

So if the number is big in k bits, so I can write down a number that's of size 2 to the

k. So it's kind of in between polynomial and exponential, you might say. Polynomial

good, exponential bad, pseudopolynomial, it's all right. That's the lesson. And for

knapsack, this is the best we can do, as we'll talk about later. Pseudopolynomial is

really the best you could hope for. So, sometimes that's as good as you can do and

dynamic programming lets you do it.

18


