
6.006 Introduction to Algorithms Recitation 14, 2011

Problem 1. Guess Who? (Spring, 2011 Final)
Woody the woodcutter will cut a given log of wood, at any place you choose, for a price equal to
the length of the given log. Suppose you have a log of length L, marked to be cut in n different
locations labeled 1, 2, . . . , n. For simplicity, let indices 0 and n + 1 denote the left and right
endpoints of the original log of length L. Let di denote the distance of mark i from the left end of
the log, and assume that 0 = d0 < d1 < d2 < . . . < dn < dn+1 = L. The wood-cutting problem
is the problem of determining the sequence of cuts to the log that will cut the log at all the marked
places and minimize your total payment. Give an efficient algorithm to solve this problem.

Solution: Dynamic programming. c(i, j) = mini<k<j{c(i, k) + c(k, j) + (dj − di)} where c(i, j)
is the min cost of cutting a log with left endpoint i and right endpoint j at all its marked locations.
Start with c(i, i+1) (consecutive cuts) and move outwards to c(i, i+2), c(i, i+3) until the maximal
distance c(1, n), which gives the optimal score for the whole wood. Remember pointers to k that
gave max score at each step, and trace back pointers to construct optimal solution. Each iteration
takes O(n) (linear search between i and j) and there are O(n2) entries to fill (a triangle really, not a
square). Greedy solutions that pick the maximum cut each time do not work. Similarly, heuristics
like picking the point closest to the center do not work.

1

24 December

6.006 Introduction to Algorithms Recitation 14, 2011

Problem 2. I Am Locutus of Borg, You Will Respond To My Questions [24 points]
Upon arrival at the planet Vertex T, you and Ensign Treaps are captured by the Borg. They promptly
throw the ensign out of the airlock. You had better solve their problem, lest you share his fate.

0 1

1 1 1 1 1

1 1 0

1

1

1 1 1 1

001 0

1

2

3

0 1 2 3 4

0

4 1 1 01 1

The Vertex T parking lot is an n × n matrix A. There are already
a number of spaceships parked in the lot. For 0 ≤ i, j < n, let
A[i][j] = 0 if there is a ship occupying position (i, j), and 1 other-
wise.

The Borg want to find the largest square parking space in which to
park the Borg Cube. That is, find the largest k such that there exists
a k × k square in A containing all ones and no zeros. In the example
figure, the solution is 3, as illustrated by the 3× 3 highlighted box.

Describe an efficient algorithm that finds the size of the largest square
the running time of your algorithm.

Hint: Call A[0][0] be the top-left of the parking lot, and call A[n
Use dynamic programming, with the subproblem S[i, j] being the sid
parking space whose bottom-right corner is at (i, j).

parking space in A. Analyze

− 1][n − 1] the bottom-right.
e length of the largest square

Solution: The base cases are the positions along the top and left sides of the parking lot. In each
of these positions, you can fit a 1× 1 square parking space if and only if the space is unoccupied.
Thus, for the base cases (i = 0 or j = 0), we have S[i, j] = A[i][j].

Now for the general case. Again, if A[i][j] = 0, then S[i, j] = 0, so we’ll only consider the case
where A[i][j] = 1. There is a parking space of size x with bottom-right corner at (i, j) if and only
if there are three (overlapping) spaces of size x − 1 at each of the locations (i − 1, j), (i, j − 1),
and (i− 1, j − 1). Thus, the largest possible parking space is

S[i, j] = 1 + min(S[i− 1, j] , S[i, j − 1] , S[i− 1, j − 1])

The desired answer is maxi,j S[i, j], which requires O(n2) to compute.

There are n2 subproblems, and each takes O(1) time to solve, for a time of O(n2). This, added to
the O(n2) to extract the desired answer, gives a total O(n2) running time, which is clearly optimal
because all the data must be examined.

2

24 December

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms

