
6.006 Introduction to Algorithms Recitation 19 November 23, 2011

The Knapsack Problem
You find yourself in a vault chock full of valuable items. However, you only brought a knapsack
of capacity S pounds, which means the knapsack will break down if you try to carry more than S
pounds in it). The vault has n items, where item i weighs si pounds, and can be sold for vi dollars.
You must choose which items to take in your knapsack so that you’ll make as much money as
possible after selling the items. The weights, si, are all integers.

Decisions and State
A solution to an instance of the Knapsack problem will indicate which items should be added to the
knapsack. The solution can be broken into n true / false decisions d0 . . . dn 1. For 0 ≤ i ≤ n− 1,−
di indicates whether item i will be taken into the knapsack.

In order to decide whether to add an item to the knapsack or not, we need to know if we have
enough capacity left over. So the “current state” when making a decision must include the available
capacity or, equivalently, the weight of the items that we have already added to the knapsack.

Dynamic Programming Solution
dp[i][j] is the maximum value that can be obtained by using a subset of the items i . . . n − 1 (last
n − i items) which weighs at most j pounds. When computing dp[i][j], we need to consider all
the possible values of di (the decision at step i):

1. Add item i to the knapsack. In this case, we need to choose a subset of the items i+1 . . . n−1
that weighs at most j−si pounds. Assuming we do that optimally, we’ll obtain dp[i+1][j−
si] value out of items i+ 1 . . . n− 1, so the total value will be vi + dp[i+ 1][j − si].

2. Don’t add item i to the knapsack, so we’ll re-use the optimal solution for items i+1 . . . n−1
that weighs at most j pounds. That answer is in dp[i+ 1][j].

We want to maximize our profits, so we’ll choose the best possible outcome.(
dp[i+ 1][j]

dp[i][j] = max
dp[i+ 1][j − si] + vi if j ≥ si

To wrap up the loose ends, we notice that dp[n][j] = 0,∀0

)
≤ j ≤ S is a good base case, as the

interval n . . . n− 1 contains no items, so there’s nothing to add to the knapsack, which means the
total sale value will be 0. The answer to our original problem can be found in dp[0 ][S ]. The value
in dp[i][j] depends on values of dp[i+ 1][k] where k < j, so a good topological sort would be:

dp[n][0] dp[n][1] . . . dp[n][S]
dp[n− 1][0] dp[n− 1][1] . . . dp[n− 1][S]

. . .. . .. . .
dp[0][0], dp[0][1] . . . dp[0][S]

This topological sort can be produced by the pseudo-code below.

1



6.006 Introduction to Algorithms Recitation 19 November 23, 2011

KNAPSACKDPTOPSORT(n, S)

1 for i in {n, n− 1 . . . 0}
2 for j in {0, 1 . . . S}
3 print (i, j)

The full pseudo-code is straight-forward to write, as it closely follows the topological sort and
the Dynamic Programming recurrence.

KNAPSACK(n, S, s, v)

1 for i in {n, n− 1 . . . 0}
2 for j in {0, 1 . . . S}
3 if i == n
4 dp[i][j] = 0 // initial condition
5 else
6 choices = []
7 APPEND(choices , dp[i+ 1][j])
8 if j ≥ si
9 APPEND(choices , dp[i+ 1][j − si] + vi)

10 dp[i][j] = MAX(choices)
11 return dp[0][S]

DAG Shortest-Path Solution
The Knapsack problem can be reduced to the single-source shortest paths problem on a DAG (di-
rected acyclic graph). This formulation can help build the intuition for the dynamic programming
solution.

The state associated with each vertex is similar to the dynamic programming formulation:
vertex (i, j) represents the state where we have considered items 0 . . . i, and we have selected
items whose total weight is at most j pounds. We can consider that the DAG has n+1 layers (one
layer for each value of i, 0 ≤ i ≤ n), and each layer consists of S + 1 vertices (the possible total
weights are 0 . . . S).

As shown in figure 1, each vertex (i, j) has the following outgoing edges:

• Item i is not taken: an edge from (i, j) to (i+ 1, j) with weight 0

• Item i is taken: an edge from (i, j) to (i+ 1, j + si) with weight −vi if j + si ≤ S

The source vertex is (0, 0), representing an initial state where we haven’t considered any item
yet, and our backpack is empty. The destination is the vertex with the shortest path out of all
vertices (n, j), for 0 ≤ j ≤ S.

Alternatively, we can create a virtual source vertex s, and connect it to all the vertices (0, j)
for 0 ≤ j ≤ S, meaning that we can leave j pounds of capacity unused (the knapsack will end up
weighing S − j pounds). In this case, the destination is the vertex (n, S). This approach is less
intuitive, but matches the dynamic programming solution better.

2



6.006 Introduction to Algorithms Recitation 19 November 23, 2011

(2, 1)

0 -5

(3, 1) (3, 4)

Figure 1: Edges coming out of the vertex (2, 1) in a Knapsack problem instance where item 2
has weight 3 and value 5. If item 2 is selected, the new total weight will be 1 + 3 = 4, and the
total value will increase by 5. Edge weights are negative so that the shortest path will yield the
maximum knapsack value.

Running Time
The dynamic programming solution to the Knapsack problem requires solving O(nS) sub-problems.
The solution of one sub-problem depends on two other sub-problems, so it can be computed in
O(1) time. Therefore, the solution’s total running time is O(nS).

The DAG shortest-path solution creates a graph with O(nS) vertices, where each vertex has an
out-degree of O(1), so there are O(nS) edges. The DAG shortest-path algorithm runs in O(V +E),
so the solution’s total running time is also O(nS). This is reassuring, given that we’re performing
the same computation.

The solution running time is not polynomial in the input size. The next section explains the
subtle difference between polynomial running times and pseudo-polynomial running times, and
why it matters.

3



6.006 Introduction to Algorithms Recitation 19 November 23, 2011

Polynomial Time vs Pseudo-Polynomial Time
To further understand the difference between algorithms with polynomial and pseudo-polynomial
running times, let’s compare the performance of the Dynamic Programming solution to the Knap-
sack problem with the performance of Dijkstra’s algorithm for solving the single-source shortest
paths problem.

Dynamic Programming for Knapsack
The input for an instance of the Knapsack problem can be represented in a reasonably compact
form as follows (see Figure 2):

• The number of items n, which can be represented using O(log n) bits.

• n item weights. We notice that item weights should be between 0 . . . S because we can
ignore any items whose weight exceeds the knapsack capacity. This means that each weight
can be represented using O(logS) bits, and all the weights will take up O(n logS) bits.

• n item values. Let V be the maximum value, so we can represent each value using O(log V )
bits, and all the values will take up O(n log V ) bits.

n s1 s2 . . . sn v1 v2 . . . vn

log n logS logS logS

Figure 2: A compact representation of an instance of the Knapsack problem. The item weights,
si, should be between 0 and S. An item whose weight exceeds the knapsack capacity (si > S) can
be immediately discarded from the input, as it wouldn’t fit the knapsack.

The total input size is O(log(n) + n(logS + log V )) = O(n(logS + log V )). Let b = logS,
v = log V , so the input size is O(n(v + b)). The running time for the Dynamic Programming
solution is O(nS) = O(n · 2b). Does this make you uneasy? It should, and the next paragraph
explains why.

In this course, we use asymptotic analysis to understand the changes in an algorithm’s perfor-
mance as its input size increases – the corresponding buzzword is “scale”, as in “does algorithm X
scale?”. So, how does our Knapsack solution runtime change if we double the input size?

We can double the input size by doubling the number of items, so n′ = 2n. The running time
is O(nS), so we can expect that the running time will double. Linear scaling isn’t too bad!

However, we can also double the input size by doubling v and b, the number of bits required
to represent the item weights and values. v doesn’t show up in the running time, so let’s study
the impact of doubling the input size by doubling b. If we set b′ = 2b, the O(n · 2b) result of our
algorithm analysis suggests that the running time will increase quadratically!

To drive this point home, Table 1 compares the solution’s running time for two worst-case
inputs of 6, 400 bits against a baseline worst-case input of 3, 200 bits.

4



6.006 Introduction to Algorithms Recitation 19 November 23, 2011

Metric Baseline Double n Double b
n 100 items 200 items 100 items
b 32 bits 32 bits 64 bits
Input size 3, 200 bits 6, 400 bits 6, 400 bits
Worst-case S 232 − 1 = 4 · 109 4 · 109 264 − 1 = 1.6 · 1019
Running time 4 · 1011 ops 8 · 1011 ops 1.6 · 1021 ops
Input size 1x 2x 2x
Time 1x 2x 4 · 109x

Table 1: The amounts of time required to solve some worst-case inputs to the Knapsack problem.

The Dynamic Programming solution to the Knapsack problem is a pseudo-polynomial algo-
rithm, because the running time will not always scale linearly if the input size is doubled. Let’s
look at Dijkstra’s algorithm, for comparison.

Dijkstra for Shortest-Paths
Given a graph G with V vertices and E edges, Dijkstra’s algorithm implemented with binary heaps
can compute single-source shortest-paths in O(E log V )1.

The input graph for an instance of the single-source shortest-paths problem can be represented
in a reasonably compact form as follows (see Figure 3):

• The number of vertices V , which can be represented using O(log V ) bits.

• The number of edges E, which can be represented using O(logE) bits.

• E edges, represented as a list of tuples (si, ti, wi) (directed edge i goes from vertex si to
vertex ti, and has weight wi). We notice that si and ti can be represented using O(logV )
bits, since they must address V vertices. Let the maximum weight be W , so that each wi

takes up O(logW ) bits. It follows that all edges take up O(E(log V + logW )) bits.

V E s1 t1 w1 s2 t2 w2 . . . sE tE wE

log V logE log V log V logW log V log V logW log V log V logW

Figure 3: A compact representation of an instance of the single-source shortest-paths problem.
Each edge i is represented by a tuple, (si, ti, wi), where si and ti are between 0 and V − 1 and wi

is the edge’s weight.

The total input size is O(log(V ) + log(E) + E(2 log V + logW )) = O(E(log V + logW )).
Let b = logW , so the input size is O(E(log V + b)).

1A Fibonacci heaps-based implementation would have a running time of O(E + V log V ). Using that time would
our analysis a bit more difficult. Furthermore, Fibonacci heaps are only important to theorests, as their high constant
factors make them slow in practice.

5



6.006 Introduction to Algorithms Recitation 19 November 23, 2011

Note that the graph representation above, though intuitive, is not suitable for running Dijkstra.
However, the edge list representation can be used to build an adjacency list representation in O(V +
E), so the representation choice does not impact the total running time of Dijkstra’s algorithm,
which is O(E log V ).

Compare this result to the Knapsack solution’s running time. In this case, the running time is
polynomial (actually linear) in the number of bits required to represent the input. If we double the
input size by doubling E, the running time will double. If we double the input size by doubling the
width of the numbers used to represent V (in effect, we’d be squaring V , but not changing E), the
running time will also double. If we double the input size by doubling b, the width of the numbers
used to represent edge weights, the running time doesn’t change. No matter the reason why how
the input size doubles, there is no explosion in the running time.

Computation Model
Did that last paragraph make you uneasy? We just said that doubling the width of the numbers
used to represent the edge weights doesn’t change the running time at all. How can that be?!

We’re assuming the RAM computation model, where we can perform arithmetic operations on
word-sized numbers in O(1) time. This simplifies our analysis, but the main result above (Dijkstra
is polynomial, Knapsack’s solution is pseudo-polynomial) hold in any reasonable (deterministic)
computational model. You can convince yourself that, even if arithmetic operations take time
proportional to the inputs sizes (O(b), O(n), or O(log V ), depending on the case) Dijkstra’s run-
ning time is still polynomial in the input size, whereas the Dynamic Programming solution to the
Knapsack problem takes an amount of time that is exponential in b.

6



6.006 Introduction to Algorithms Recitation 19 November 23, 2011

Subset Sum
In a variant of the Knapsack problem, all the items in the vault are gold bars. The value of a gold
bar is directly proportional to its weight. Therefore, in order to make the most amount of money,
you must fill your knapsack up to its full capacity of S pounds. Can you find a subset of the gold
bars whose weights add up to exactly S?

Boolean Logic for Dynamic Programming
Dynamic Programming is generally used for optimization problems that involve maximizing an
objective. The Subset Sum problem asks us for a boolean (TRUE / FALSE) answer to the question
“Is there a combination of bars whose weights add up to S or not?” Fortunately, we can use the
boolean logic formulation below to transform this into a maximization problem.

We’ll use the C language representation of booleans: TRUE is 1, FALSE is 0. This is motivated
by the fact that we want to arrive to an answer of TRUE whenever that is possible, and only arrive
to an answer of FALSE otherwise.

Formally, let S be the set of all possible subsets of gold bars, and let good(s) be a function that
takes a subset of gold bars and returns TRUE if it is a good solution (the total weight of the bars is
S) and FALSE otherwise. If we let TRUE = 1 and FALSE = 0, the answer to our initial problem is

max good(s)
s∈S

We can define the familiar Boolean arithmetic operations AND, OR, and NOT as follows. Let
a and b be Boolean variables.

• AND(a, b): a ∧ b = a · b (AND is multiplication)

• OR(a, b): a ∨ b = max(a, b) (OR is max)

• NOT(a): ¬a = 1− a (NOT is 1’s complement)

Dynamic Programming Solution
The Subset Sum solution has identical decisions and state to the Knapsack solution, so we can go
straight to writing the Dynamic Programming solution.

dp[i][j] is TRUE (1) if there is a subset of the gold bars i . . . n−1 (last n− i bars) which weighs
exactly j pounds. When computing dp[i][j], we need to consider all the possible values of di (the
decision at step i, which is whether or not to include bar i):

1. Add bar i to the knapsack. In this case, we need to choose a subset of the bars i+1 . . . n− 1
that weighs exactly j − si pounds. dp[i+ 1][j − si] indicates whether such a subset exists.

2. Don’t add item i to the knapsack. In this case, the solution rests on a subset of the bars
i + 1 . . . n − 1 that weighs exactly j pounds. The answer of whether such a subset exists is
in dp[i+ 1][j].

7



6.006 Introduction to Algorithms Recitation 19 November 23, 2011

Either of the above avenues yields a solution, so dp[i][j] is TRUE if at least one of the decision
possibilities results in a solution. Recall that OR is implemented using max in our Boolean logic.
The recurrence (below) ends up being simpler than the one in the Knapsack solution!

dp[i][j] = max

(
dp[i+ 1][j]
dp[i+ 1][j − si] if j ≥ si

)
The initial conditions for this problem are dp[n][0] = 1 (TRUE) and dp[n][j] = 0 (FALSE)

∀1 ≤ j ≤ S. The interval n . . . n − 1 contains no items, the corresponding knapsack is empty,
which means the only achievable weight is 0.

Just like in the Knapsack problem, the answer the original problem is in dp[0 ][S ]. The topo-
logical sort is identical to Knapsack’s, and the pseudo-code only has a few small differences.

SUBSETSUM(n, S, s)

1 for i in {n, n− 1 . . . 0}
2 for j in {0, 1 . . . S}
3 if i == n // initial conditions
4 if j == 0
5 dp[i][j] = 1
6 else
7 dp[i][j] = 0
8 else
9 choices = []

10 APPEND(choices , dp[i+ 1][j])
11 if j ≥ si
12 APPEND(choices , dp[i+ 1][j − si])
13 dp[i][j] = MAX(choices)
14 return dp[0][S]

DAG Shortest-Path Solution
The DAG representation of the problem is also very similar to the Knapsack representation, and
slightly simpler.

A vertex (i, j) represents the possibility of finding a subset of the first i bars that weighs exactly
j pounds. So, if there is a path to vertex (i, j) (the shortest path length is less than inf), then the
answer to sub-problem (i, j) is TRUE.

The starting vertex is (0, 0) because we can only achieve a weight of 0 pounds using 0 items.
The destination vertex is (n, S), because that maps to the goal of finding a subset of all items that
weighs exactly S pounds.

We only care about the existence of a path, so we can use BFS or DFS on the graph. Alterna-
tively, we can assign the same weight of 1 to all edges, and run the DAG shortest-paths algorithm.
Both approaches yield the same running time, but the latter approach maps better to the dynamic
programming solution.

8



6.006 Introduction to Algorithms Recitation 19 November 23, 2011

K-Sum
A further restriction of the Subset Sum problem is that the backpack has K pockets, and you can
fit exactly one gold bar in a pocket. You must fill up all the pockets, otherwise the gold bars will
move around as you walk, and the noises will trigger the vault’s alarm. The problem becomes:
given n gold bars of weights s0 . . . sn 1, can you select exactly K bars whose weights add up to−
exactly S?

Decisions and State
A solution to a problem instance looks the same as for the Knapsack problem, so we still have n
Boolean decisions d0 . . . dn−1.

However, the knapsack structure changed. In the original problem, the knapsack capacity
placed a limit on the total weight of the items, so we needed to keep track of the total weight of the
items that we added. That was our state. In the k-Sum problem, the knapsack also has slots. When
deciding whether to add a gold bar to the knapsack or not, we need to know if there are any slots
available, which is equivalent to knowing how many slots we have used up. So the problem state
needs to track both the total weight of the bars in the knapsack, and how many slots they take up.
The number of slots equals the number of bars in the backpack.

Dynamic Programming Solution
dp[i][j][k] is TRUE (1) if there is a k-element subset of the gold bars i . . . n− 1 that weighs exactly
j pounds. dp[i][j][k] is computed considering all the possible values of di (the decision at step i,
which is whether or not to include bar i):

1. Add bar i to the knapsack. In this case, we need to choose a k − 1-bar subset of the bars
i+ 1 . . . n− 1 that weighs exactly j − si pounds. dp[i+ 1][j − si][k − 1] indicates whether
such a subset exists.

2. Don’t add item i to the knapsack. In this case, the solution rests on a k-bar subset of the bars
i + 1 . . . n − 1 that weighs exactly j pounds. The answer of whether such a subset exists is
in dp[i+ 1][j][k].

Either of the above avenues yields a solution, so dp[i][j][k] is TRUE if at least one of the
decision possibilities results in a solution. The recurrence is below.(

dp[i+ 1][j][k]
dp[i][j][k] = max

dp[i+ 1][j − si][k − 1] if j ≥ si and k > 0

)
The initial conditions for this problem are dp[n][0][0] = 1 (TRUE) and dp[n][j][k] = 0 (FALSE)

∀1 ≤ j ≤ S, 0 ≤ k ≤ K. The interval n . . . n− 1 contains no items, the corresponding knapsack
is empty, which means the only achievable weight is 0.

The answer the original problem is in dp[0 ][S ][K ].
A topological sort can be produced by the following pseudo-code.

9



6.006 Introduction to Algorithms Recitation 19 November 23, 2011

DPTOPSORT(n, S )

1 for i in {n− 1, n− 2 . . . 0}
2 for j in {0, 1 . . . S}
3 for k in {0, 1 . . . K}
4 print (i, j, k)

Once again, the topological sort can be combined with the Dynamic Programming recurrence
to obtain the full solution pseudo-code in a straight-forward manner.

KSUM(n,K, S, s)

1 for i in {n, n− 1 . . . 0}
2 for j in {0, 1 . . . S}
3 for k in {0, 1 . . . K}
4 if i == n // initial conditions
5 if j == 0 and k == 0
6 dp[i][j][k] = 1
7 else
8 dp[i][j][k] = 0
9 else

10 choices = []
11 APPEND(choices , dp[i+ 1][j][k])
12 if j ≥ si and k > 0
13 APPEND(choices , dp[i+ 1][j − si][k − 1])
14 dp[i][j][k] = MAX(choices)
15 return dp[0][S][K]

DAG Shortest-Path Solution
The reduction to shortest-paths in a DAG offers a different avenue that leads to the same solution,
and helps build intuition.

Let’s start with the reduction of Subset Sum. We have a graph of vertices (i, j), and want a
path from (0, 0) to (n, S) that picks up exactly k bars.

Let’s attempt to use edge weights to count the number of bars. Edges from (i, j) to (i + 1, j)
will have a cost of 0, because it means that bar i is not added to the knapsack. Edges from (i, j) to
(i + 1, j + si) have a cost of 1, as they imply that one bar is added to the knapsack, and therefore
one more slot is occupied. Figure 4 shows an example.

Given the formulation above, we want to find a path from (0, 0) to (n, S) whose cost is exactly
K. We can draw upon our intution built from previous graph transformation problems, and realize
that we can represent K-cost requirement by making K copies of the graph, where each copy k is
a layer that captures the paths whose cost is exactly k.

Therefore, in the new graph, a vertex (i, j, k) indicates whether there is a k-cost path to vertex
(i, j) in the Subset Sum problem graph. Each 0-cost edge from (i, j) to (i + 1, j) in the old graph

10



6.006 Introduction to Algorithms Recitation 19 November 23, 2011

(2, 1)

0 1

(3, 1) (3, 4)

Figure 4: Edges coming out of the vertex (2, 1) in a k-Sum problem instance where gold bar 2 has
weight 3. If bar 2 is added to the knapsack, the new total weight will be 1+3 = 4, and the number
of occupied slots increases by 1.

maps to K edges from (i, j, k) to (i + 1, j, k) in the new graph. Each 1-cost edge from (i, j) to
(i, j + si) maps to K edges (i, j, k) to (i, j + si, k + 1). A comparison between figures 5 and 4
illustrates the transformation.

(2, 1, 1)

(3, 1, 1)

(3, 4, 2)

Figure 5: Edges coming out of the vertex (2, 1, 1) in a k-Sum problem instance where gold bar 2
has weight 3. If bar 2 is added to the knapsack, the new total weight will be 1 + 3 = 4, and the
number of occupied slots increases by 1.

In the new graph, we want to find a path from vertex (0, 0, 0) to vertex (n, S,K). All edges
have the same weight.

Convince yourself that the DAG described above is equivalent to the dynamic programming
formulation in the previous section.

Running Time
The Dynamic Programming solution solves O(K · ns) sub-problems, and each sub-problem takes
O(1) time to solve. The solution’s total running time is O(KnS).

The DAG has K + 1 layers of O(nS) vertices (vertex count borrowed from the Knapsack
problem), and K copies of the O(nS) edges in the Knapsack graph. Therefore, V = O(K ·S) and
E = O(Kc · S). The solution’s running time is O(V + E) = o(KnS)

11



6.006 Introduction to Algorithms Recitation 19 November 23, 2011

On your own: Multiset k-Sum
How does the previous problem change if there is an endless supply of copies of each bar so,
effectively, each bar can be added to the knapsack more than once?

Compare the O(nK · k

S) solution to the O(n 2 ) solution in Quiz 1 (Problem 6: Shopping Mad-
ness).

12



MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms
Fall 2011
 
 
 
For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

http://ocw.mit.edu
http://ocw.mit.edu/terms



