Lecture 1: Introduction and Peak Finding

Lecture Overview

- Administrivia
- Course Overview
- "Peak finding" problem - 1D and 2D versions

Course Overview

This course covers:

- Efficient procedures for solving problems on large inputs (Ex: U.S. Highway Map, Human Genome)
- Scalability
- Classic data structures and elementary algorithms (CLRS text)
- Real implementations in Python
- Fun problem sets!

The course is divided into 8 modules - each of which has a motivating problem and problem set(s) (except for the last module). Tentative module topics and motivating problems are as described below:

1. Algorithmic Thinking: Peak Finding
2. Sorting \& Trees: Event Simulation
3. Hashing: Genome Comparison
4. Numerics: RSA Encryption
5. Graphs: Rubik's Cube
6. Shortest Paths: Caltech \rightarrow MIT
7. Dynamic Programming: Image Compression
8. Advanced Topics

Peak Finder

One-dimensional Version

Position 2 is a peak if and only if $b \geq a$ and $b \geq c$. Position 9 is a peak if $i \geq h$.

1	2	3	4	5	6	7	8	9
a	b	c	d	e	f	g	h	i

Figure 1: a-i are numbers
Problem: Find a peak if it exists (Does it always exist?)

Straightforward Algorithm

Start from left

Figure 2: Look at $n / 2$ elements on average, could look at n elements in the worst case
What if we start in the middle? For the configuration below, we would look at $n / 2$ elements. Would we have to ever look at more than $n / 2$ elements if we start in the middle, and choose a direction based on which neighboring element is larger that the middle element?

Can we do better?

Figure 3: Divide \& Conquer

- If $a[n / 2]<a[n / 2-1]$ then only look at left half $1 \ldots n / 2---1$ to look for peak
- Else if $a[n / 2]<a[n / 2+1]$ then only look at right half $n / 2+1 \ldots n$ to look for peak
- Else $n / 2$ position is a peak: WHY?

$$
\begin{aligned}
a[n / 2] & \geq a[n / 2-1] \\
a[n / 2] & \geq a[n / 2+1]
\end{aligned}
$$

What is the complexity?

$$
T(n)=T(n / 2)+\underbrace{\Theta(1)}_{\text {to compare a }[\mathrm{n} / 2] \text { to neighbors }}=\Theta(1)+\ldots+\Theta(1)\left(\log _{2}(n) \text { times }\right)=\Theta\left(\log _{2}(n)\right)
$$

In order to sum up the $\Theta(i)$'s as we do here, we need to find a constant that works for all. If $n=1000000, \Theta(n)$ algo needs 13 sec in python. If algo is $\Theta(\log n)$ we only need 0.001 sec . Argue that the algorithm is correct.

Two-dimensional Version

Figure 4: Greedy Ascent Algorithm: $\Theta(n m)$ complexity, $\Theta\left(n^{2}\right)$ algorithm if $m=n$ a is a 2D-peak iff $a \geq b, a \geq d, a \geq c, a \geq e$

14	13	12	
15	9	11	17
16	17	19	20

Figure 5: Circled value is peak.

Attempt \# 1: Extend 1D Divide and Conquer to 2D

- Pick middle column $j=m / 2$.
- Find a 1D-peak at i, j.
- Use (i, j) as a start point on row i to find 1D-peak on row i.

Attempt \#1 fails

Problem: 2D-peak may not exist on row i

		10	
14	13	12	
15	9	11	
16	17	19	20

End up with 14 which is not a 2D-peak.

Attempt \# 2

- Pick middle column $j=m / 2$
- Find global maximum on column j at (i, j)
- Compare $(i, j-1),(i, j),(i, j+1)$
- Pick left columns of $(i, j-1)>(i, j)$
- Similarly for right
- (i, j) is a 2D-peak if neither condition holds \leftarrow WHY?
- Solve the new problem with half the number of columns.
- When you have a single column, find global maximum and you're done.

Example of Attempt \#2

				go with			
10	8	10	10	10	10	10	
14	13	12	11	12	11	11	
15	9	11	21	11	21	(21)	find 21
16	17	19	20	19	20	20	
				\uparrow this	$\begin{gathered} \text { colu } \\ \text { ma } \\ \text { blum } \end{gathered}$		

Complexity of Attempt \#2

If $T(n, m)$ denotes work required to solve problem with n rows and m columns

$$
\begin{aligned}
T(n, m) & =T(n, m / 2)+\Theta(n) \text { (to find global maximum on a column - (n rows) }) \\
T(n, m) & =\underbrace{\Theta(n)+\ldots+\Theta(n)}_{\log m} \\
& =\Theta(n \log m)=\Theta(n \log n) \text { if } \mathrm{m}=\mathrm{n}
\end{aligned}
$$

Question: What if we replaced global maximum with 1D-peak in Attempt \#2? Would that work?

MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms

Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

