
MITOCW | 8. Hashing with Chaining

The following content is provided under a Creative Commons license. Your support

will help MIT OpenCourseWare continue to offer high quality educational resources

for free. To make a donation or view additional materials from hundreds of MIT

courses, visit MIT OpenCourseWare at ocw.mit.edu.

PROFESSOR: All right. Let's get started. Today we start a brand new section of 006, which is

hashing. Hashing is cool. It is probably the most used and common and important

data structure and all of computer science. It's in, basically, every system you've

ever used, I think. And in particular, it's in Python as part of what makes Python fun

to program in. And basically, every modern programming language has it.

So today is about how to make it actually happen. So what is it? It is usually called a

dictionary. So this is an abstract data if you remember that term from a couple

lectures ago. It's kind of an old term, not so common anymore, but it's useful to

think about.

So a dictionary is a data structure, or it's a thing, that can store items, and it can

insert items, delete items and search for items. So in general, it's going to be a set

of items, each item has a key. And you can insert an item, you can delete an item

from the set, and you can search for a key, not an item.

And the interesting part is the search. I think you know what insert and delete do. So

there are two outcomes to this kind of search. This is what I call an exact search.

Either you find an item with a given key, or there isn't one, and then you just say key

error in Python.

OK. This is a little different from what we could do with binary search trees. Binary

search trees, if we didn't find a key, we could find the next larger and the next

smaller successor and predecessor. With dictionaries you're not allowed to do that,

or you're not able to do that.

And you're just interested in the question does the key exist? And if so, give me the

item with that key. So we're assuming here that the items have unique keys, no two

1



items have the same key.

And one way to enforce that is when you insert an item with an existing key, it

overwrites whatever key was there. That's the Python behavior. So we'll assume

that. Overwrite any existing key. And so, it's well defined what search does. Either

there's one item with that key, or there's no item with that key, and it tells you what

the situation is. OK.

So one way to solve dictionaries is to use a balanced binary search tree like AVL

trees. And so you can do all of these operations on log n time. I mean, you can

ignore the fact that AVL trees give you more information when you do a search, and

still does exact search.

So that's one solution, but it turns out you can do better. And while last class was

about, well, in the comparison model the best way to sort is n log n and the best

way to search is log n. Then we saw in the RAM model, where if you assume your

items are integers we can sort faster, sometimes we can sort in linear time.

Today's lecture is about how to search faster than log n time. And we're going to get

down to constant time. No-- basically, no assumptions except, maybe, that your

keys are integers. We'll be able to get down to constant time with high probability.

It's going to be a randomized data structure. It's one of the few instances of

randomization in 006, but it'll be pretty simple to analyze, so don't worry. But we're

going to use some probability today. Make it a little exciting.

I think you know how dictionaries work in Python. In Python it's the dict data type.

We've used it all over the place. The key things you can do are lookup a key and--

so this is the analog of search-- you can set a key to a value. This is the analog of

an insert. It overwrites whatever was there. And what else? Delete. So you can

delete a particular key. OK.

We'll usually use this notation because it's more familiar and intuitive. But the big

topic today is how do you actually implement these operations for a dictionary, D?

The one specific thing about Python dictionaries is that an item is basically a pair of
2



two things, a key and a value. And so, in particular, when you call d.items you get a

whole bunch of ordered pairs, a key and a value.

And so the key is always-- the key of an item is always this first part. So it's well

defined. OK. So that's Python dictionaries.

So one obvious motivation for building dictionaries is you need them in Python. And

in fact, people use them all the time. We used them in docdist. All of the fastest

versions of the document distance problem used dictionaries for counting words,

how many times each word occurs in a document, and for computing inner

products, for finding common words between two documents. And it's just it's the

best way to do things, it's the easiest way to do things , and the fastest.

As a result, dictionaries are built into basically every modern programming

language, Python, Perl, Ruby, JavaScript, Java, C++, C#. In modern versions, all

have some version of dictionaries. And they all run in, basically, constant time using

the stuff that's in this lecture and the next two lectures.

Let's see. It's also, in, basically, every database. There are essentially two kinds of

databases in the world, there are those that use hashing, and there are those that

use search trees. Sometimes you need one. Sometimes you need the other. There

are a lot of situations in databases where you just need hashing.

So if you've ever used Berkeley DB, there's a hash type of a database. So if things

like, when you go to Merriam-Webster, and you look up a word, how do you find the

definition of that word? You use a hash table, you use a dictionary, I should say.

How do you-- when you spell check your document, how do you tell whether a word

is correctly spelled? You look it up in a dictionary. If it's not correctly spelled, how do

you find the closest related, correct spelling? You try tweaking one the letters, and

look it up in a dictionary and see if it's there. You do that for all possible letters, or

maybe two letters.

That is a state of the art way to do spelling correction. Just keep looking up in a

3



dictionary. Because dictionaries are so fast you can afford to do things like trial

perturbations of letters.

What else. In the old days, which means pre-Google, every search engine on the

web would have a dictionary that says, for given word, give me all of the documents

containing that word. Google doesn't do it that way, but that's another story. It's less

fancy, actually.

Or when you log into a system, you type your username and password. You look in

a dictionary that stores a username and, associated with that username, all the

information of that user. Every time you log into a web system, or whatever, it is

going through a dictionary.

So they're all over the place. One of the original applications is in writing

programming languages. Some of the first computer programs were programming

languages, so you could actually program them in a reasonable way.

Whenever you type a variable name the computer doesn't really think about that

variable name, it wants to think about an address in memory. And so you've got to

translate that variable name into a real, physical address in the machine, or a

position on the stack, or whatever it is in real life. In the old days of Python, I guess

this is pre-Python 2 or so, 2.1, I don't remember the exact transition it was. In the

interpreter, there was the dictionary of all your global variables, there's a dictionary

of all your local variables.

And that was-- it was right there. I mean you could modify the dictionary, you could

do crazy things. And all the variables were there. And so they'd match the key to the

actual value stored in the variable.

They don't do that anymore because it's a little slow, but-- and you could do better

in practice. But at the very least, when you're compiling the thing, you need a

dictionary. And then, later on, you can do more efficient lookups. Let's see.

On the internet there are hash tables all over, like in your router. Router needs to

know all the machines that are connected to it. Each machine has an IP address, so

4



when you get a packet in, and it says, deliver to this IP address, you see, oh, is it in

my dictionary of all the machines that are directly connected to me? If so, send it

there.

If it's not then it has to find the right subnet. That's not quite a dictionary problem, a

little more complicated. But for looking up local machines, it's a dictionary. Routers

use dictionaries because they need to go really fast. They're getting a billion

packets every second.

Also, in the network stack of a machine, when you come in you get it packet

delivered to a particular port, you need to say, oh, which application, or which

socket is connected to this port? All of these things are dictionaries. The point is

they're in, basically, everything you've ever used, virtual memory, I mean, they're all

over the place.

There are also some more subtle applications, where it is not obvious that's it a

dictionary, but still, we use this idea of hashing we're going to talk about today. Like

searching in a string. So when you hit-- I don't know-- in your favorite editor, you do

Control-F, or Control-S, or slash, or whatever your way of searching for something

is, and you type start typing. If your editor is clever, it will use hashing in order to

search for that string. It's a faster way to do it.

If you use grep, for example, in Unix it does it in a fancy way. Every time you do a

Google search it's essentially using this. It's solving this problem. I don't know what

algorithm, but we could guess. Using the algorithms we'll cover in next lecture. It

wouldn't surprise me.

Also, if you have a couple strings and you want to know what they have in common,

how similar they are? Example, you have two DNA strings. You want to see how

similar they are, you use hashing. And you're going to do that in the next problem

set, PS4, which goes out on Thursday.

Also, for things like file and directory synchronization. So on Unix, if you rsync or

unison, or, I guess, modern day-- these days, Dropbox, MIT startup-- Whenever

5



you're synchronizing files between two locations, you use hashing to tell whether a

file has changed, or whether a directory has changed. That's a big idea. Fairly

modern idea.

And also in cryptography-- this will be a topic of next Tuesday's lecture. If you're

transferring a file and you want to check that you actually transferred that file, and

there wasn't some person in the middle corrupting your file and making it look like it

was what you wanted it to be, you use something called cryptographic hash

functions, which [INAUDIBLE] will talk about on Tuesday.

So tons of motivation for dictionaries. Let's actually do it, see how they are done.

We're going to start with sort of a very simple straw man, and then we're going to

improve it until, by the end of today, we have a really good way to solve the

dictionary problem in constant time for operation.

So the really simple approach is called a direct access table. So it's just a big table,

an array. You have-- the index into the array is the key. So, store items in an array,

indexed by key.

And in fact, Python kind makes you think about this because the Python notation for

accessing dictionaries is identical to the notation for accessing arrays. But with

arrays, the keys are restricted to be non-negative integers, 0 through n minus 1. So

why not just implement it that way?

If your keys happen to be integers I could just store all my items in a giant array. So

if I just want to store an item here with key 2, call that, maybe, item 2, I just put that

there. If I want to store something with key 4 I'll just put it there.

Everything else is going to be null, or none, or whatever. So lots of blank entries.

Whatever keys I don't use I'll just put a null value there. Every key that I want to put

into the dictionary I'll just store it at the corresponding position. What's bad about

this? Yeah.

AUDIENCE: It's hard to associate something with just an integer.

6



PROFESSOR: Hard to associate something with an integer. Good. That's one problem. There's

actually two big problems with this structure. I want both of them. So bad-- badness

number one is keys may not be integers. Good. Another problem. Yeah.

AUDIENCE: Possibility of collision.

PROFESSOR: Possibility of collision. So here there's no collisions. We'll get to collisions in a

moment, but a collision is when two items go to the same slot in this table.

And we defined the problem so there weren't collisions. We said whenever we insert

item with the same key you overwrite whatever is there. So collisions are OK. They

will be a problem in a moment, so save your answer. Yeah?

AUDIENCE: [INAUDIBLE]

PROFESSOR: Running time?

AUDIENCE: [INAUDIBLE]

PROFESSOR: For deletion? Actually, running time is going to be great. If I want to insert-- I mean,

I do these operations but on array instead of a dictionary. So if I want insert I just

put something there. If I want to delete I just set it to null. If I want to search I just go

there and see is it null? Yeah?

AUDIENCE: It's a gigantic memory hog

PROFESSOR: It's gigantic memory hog. I like that phrasing. Not always of course. If it happens

that your keys are-- the set of possible keys is not too giant then life is good.

Let's see If I cannot kill somebody today. Oh yes. Very good.

But if you have a lot of keys, you need one slot in your array per key. That could be

a lot. Maybe your keys are 64-bit integers. Then you need 264 slots just to store

one measly dictionary. That's huge. I guess there's also the running time of initialize

that.

But at the very least, you have huge space hog. This is bad. So we're going to fix

7



both of these problems one at a time.

First problem we're going to talk about is what if your keys aren't integers? Because

if your keys aren't integers you can't use this at all. So lets at least get something

that works.

And this is a notion called prehashing. I guess different people call it different things.

Unfortunately Python calls it hash. It's not hashing, it's prehashing. Emphasized the

"pre" here.

So prehash function maps whatever keys you have to non-negative integers. At this

point we're not worrying about how big those integers are. They could be giant.

We're not going to fix the second problem til later.

First problem is if I have some key, maybe it's a string, it's whatever, it's an object,

how do I map it to some integer so I could, at least in principle, put it in a direct

access table. There's a theoretical answer to how to do this, and then there's the

practical answer. how to do this. I'll start with the mathematical.

In theory, I like this, keys are finite and discrete. OK. We know that anything on the

computer could, ultimately, be written down as a string of bits. So a string of bits

represents an integer. So we're done.

So in theory, this is easy. And we're going to assume in this class, because it's sort

of a theory class, that this is what's happening. At least for analysis, we're always

going to analyze things as if this is what's happening.

Now in reality, people don't always do this. In particular-- I'll go somewhere else. In

Python it's not quite so simple, but at least you get to see what's going on.

There's a function called hash, which should be called prehash, and it, given an

object, it produces a non-- I'm not sure, actually, if it's non-negative. It's not a big

deal if it has a minus sign because then you could just use this and get rid of the

sign.

But it maps every object to an integer, or every hashable object, technically. But
8



pretty much anything can be mapped to an integer, one way or another. And so for

example, if you given it an integer it just returns the integer. So that's pretty easy.

If you give it a string it does something. I don't know exactly what it does, but there

are some issues. For example, hash of this string, backslash 0B is equal to the hash

of backslash 0 backslash 0C 64. It's a little tricky to find these examples, but they're

out there. And I guess, this is probably the lowest one in a certain measure.

So it's a concern. In practice you have to be careful about these things because

what you'd like-- in an ideal world, and in the theoretical world-- this prehash

function of x, if it equals the prehash function of y, this should only happen when

x=y, when they're the same thing. And equals equal sense, I guess, would be the

technical version.

Sadly, in Python this is not quite true. But mostly true. Let's see. If you define a

custom object, you may know this, there is an __hash__ method you can

implement, which tells Python what to do when you call hash of your object.

If you don't, it uses the default of id, which is the physical location of your object in

memory. So as long as your object isn't moving around in memory this is a pretty

good hash function because no two items occupy the same space in memory. So

that's just implementation side of things.

Other implementation side of things is in Python, well, there's this distinction

between objects and keys, I guess you would say. You really don't want this

prehash function to change value. In, say, a direct access table, if you store-- you

take an item, you compute the prehash function of the key in there, and you throw it

in, and it says, oh, prehash value is four. Then you put it in position four. If that

value change, then when you go to search for that key, and you call prehash of that

thing, and if it give you five, you look in position five, and you say, oh, it's not there.

So prehash really should not change.

If you ever implement this function don't mess with it. I mean, make sure it's defined

in such a way that it doesn't change over time. Otherwise, you won't be able to find

9



your items in the table. Python can't protect you from that.

This is why, for example, if you have a list, which is a mutable object, you cannot put

it into a hash table as a key value because it would change over time. Potentially,

you'd append to the list, or whatever. All right.

So hopefully you're reasonably happy with this. You could also think of it is we're

going to assume keys are non-negative integers. But in practice, anything you have

you can map to an integer, one way or another.

The bigger problem in a certain sense, or the more interesting problem is reducing

space. So how do we do that? This would be hashing. This is sort of the magic part

of today's lecture.

In case you're wondering, hashing has nothing to do with hashish. Hashish is a

Arabic root word unrelated to the Germanic, which is hachet, I believe. Yeah. Or

hacheh-- I guess, something like that. I'm not very good at German. Which means

hatchet. OK

It's like you take your key, and you cut it up into little pieces, and you mix them

around and cut and dice, and it's like cooking. OK. What?

AUDIENCE: Hash browns.

PROFESSOR: Hash browns, for example. Yeah, same root. OK. It's like the only two English words

with that kind of hash. OK.

In our case, it's a verb, to hash. It means to cut into pieces and mix around. OK.

That won't really be clear until towards the end of today's lecture, but we will

eventually get to the etymology of hashing. Or, we've got the etymology, but why

it's, actually, why we use that term. All right.

So the big idea is we take all possible keys and we want to reduce them down to

some small, small set of integers. Let me draw a picture of that. So we have this

giant space of all possible keys. We'll call this key space. It's like outer space,

basically. It's giant.
10



And if we stored a direct access table, this would also be giant. And we don't want to

do that. We'd like to somehow map using a hash function h down to some smaller

set. How do I want to draw this? Like an array.

So we're going to have possible values 0 up to m minus 1. m is a new thing. It's

going to be the size of our hash table. Let's call the hash table. I think we'll call it t

also. And we'd somehow like to map--

All right. So there's a giant space of all possible keys, but then there's a subset of

keys that are actually stored in this set, in this dictionary. At any moment in time

there's some set of keys that are present.

That set changes, but at any moment there's some keys that are actually there. k1,

k2, k3, k4. I'd like to map them to positions in this table. So maybe I store k2-- or

actually, item 2 would go here.

In particular, this is when h of k2, if it equals zero, then you'd put item 2 there. Item

3, let's say, it's at position-- wow, 3 would be a bit of a coincidence, but what the

hell. Maybe h or k3 equals 3. Then you'd put item 3 here. OK. You get the idea.

So these four items each have a special position in their table. And the idea is we

would like to be, m to be around n. n is the number of keys In the dictionary right

now.

So if we could achieve that, the size of the table was proportional to the number of

keys being stored in the dictionary, that would be good news because then the

space is not gigantic and hoggish. It would just be linear, which is optimal. So if we

want to store m things, maybe we'll use 2m space, a 3m space, but not much more.

How the heck are we going to define such a function h? Well, that's the rest of the

lecture. But even before we define a function h, do you see any problems with this?

Yeah.

AUDIENCE: [INAUDIBLE].

11



PROFESSOR: Yeah. This space over here, this is pigeonhole principle. The number of slots for

your pigeons over here is way smaller than the number of possible pigeons. So

there are going to be two keys that map to the same slot in the hash table. This is

what we call a collision.

Let's call this, I don't know, ki, kj. h of ki equals h of kj, but the keys are different. So

ki does not equal kj, yet their hash functions are the same, hash values are the

same. We call that a collision. And that's guaranteed to happen a lot, yet somehow,

we can still make this work. That's the magic.

And that is going to be chaining. We've done these guys. Next up is a technique for

dealing with collisions. There are two techniques for dealing with collisions we're

going to talk about in 006. One is called chaining, and next Tuesday, we'll see

another method called open addressing.

But let's start with chaining. The idea with chaining a simple. If you have multiple

items here all with the same-- that hash to the same position, just store them as a

list. I'm going to draw it as a linked list. I think I need a big picture here.

So we have our nice universe, various keys that we actually have present. So these

are the keys in the dictionary, and this is all of key space. These guys map to slots

in the table. Some of them might map to the same value.

So let's say k1 and k2, suppose they collide. So they both go this slot. What we're

going to store here is a linked list that stores item 1, and stores a pointer to the next

item, which is item 2. And that's the end of the list. Or you could-- however you want

to draw a null.

So however many items there are, we're going to have a linked list of that length in

that slot. So in particular, if there's just one item, like say, this k3 here, maybe it just

maps to this slot. And maybe that's all that maps to that slot.

In that case, we just say, follow this item 3, and there's no other items. Some slots

are going to be completely empty. There nothing there so you just store a null

pointer.
12



That is hashing with chaining. It's pretty simple, very simple really. The only

question is why would you expect it to be any good?

Because, in the worst case, if you fix your hash function here, h, there's going to be

a whole bunch of keys that all map to the same slot. And so in the worst case, those

are the keys that you insert, and they all go here. And then you have this fancy data

structure. And in the end, all you have is a linked list of all n items.

So the worst case is theta n. And this is going to be true for any hashing scheme,

actually. In the worst case, hashing sucks.

Yet in practice, it works really, really well. And the reason is randomization,

essentially, that this hash function, unless you're really unlucky, the hash function

will nicely distribute your items, and most of these lists will have constant length.

We're going to prove that under an assumption. Well have to warm up a little bit. But

I'm also going to cop out a little m as you'll see.

So in 006 we're going to make an assumption called Simple Uniform Hashing. OK.

And this is an assumption, it's an unrealistic assumption. I would go so far as to say

it's false, a false assumption. But it's really convenient for analysis, and it's going to

make it obvious why chaining is a good idea.

Sadly, the assumption isn't quite true, but it gives you a flavor. If you want to see

why hashing is actually good, I'm going to hint at it at the end of lecture but really

should take 6.046 Yeah.

AUDIENCE: [INAUDIBLE] question. Is the hashing function [INAUDIBLE]? Like, how do we know

the array is still [INAUDIBLE]?

PROFESSOR: OK. The hashing function-- I guess I didn't specify up here. The hashing function

maps your universe to 0, 1, up to m minus 1, That's the definition. So it's

guaranteed to reduce the space of keys to just m slots.

So your hashing function needs to know what m is. In reality there's not going to be
13



one hashing function, there's going to be 1 for each m, or at least one for each m.

And so, depending on how big your table is, you use the corresponding hash

function. Yeah, good question.

So the hash function is what does the work of reducing your key space down to

small set of slots. So that's what's going to give us low space. OK. But now, how do

we get low time? Let me just state this assumption and get to business.

Simply, uniform hashing is, essentially, two probabilistic assumptions. The first one

is uniformity. If you take some key in your space that you want to store the hash

function maps it to a uniform random choice. This is, of course, is what you want to

happen. Each of these slots here is equally likely to be hashed to.

OK. That's a good start. But to do proper analysis, not only do we uniformity, we

also need independence. So not only is this true for each key individually, but it's

true for all the keys together. So if key one maps to a uniform random place, no

matter where it goes, key two also matches to a uniform random place. And no

matter where those two go, key three maps to a uniform random place.

This really can't be true. But if it's true, we can prove that this takes constant time.

So let me do that. So under this assumption, we can analyze hashing-- hashing with

chaining is what this method is called. So let's do it

I want to know-- I got to cheat, sorry. I got to remember the notation. I don't have

any good notation here. All right.

What I'd like to know is the expected length of a chain. OK. Now this is if I have n

keys that are stored in the table, and m slots in the table, then what is the expected

length of a chain? Any suggestions. Yeah.

AUDIENCE: 1 over m to the n.

PROFESSOR: 1 over m to the n? That's going to be a probability of something. Not quite.

AUDIENCE: [INAUDIBLE]

14



PROFESSOR: That's between 0 and 1. It's probably at least one, or something. Yeah.

AUDIENCE: m over n.

PROFESSOR: n over m, yeah. It's really easy. The chance of a key going to a particular slot is 1

over m. They're all independent, so it's 1 over m, plus 1 over m, plus 1 over m, n

times. So it's n over m.

This is really easy when you have independence. Sadly, in the real world, you don't

have independence. We're going to call this thing alpha, and it's also known as the

load factor of the table. So if it's one, n equals m. And so the length of a chain is

one.

If it's 10, then you have 10 times as many elements as you have slots. But still, the

expected length of a chain is 10. That's a constant. It's OK.

If it's a 12, that's OK. It means that you have a bigger table than you have items. As

long as it's a constant, as long as we have-- I erased it by now-- as long as m is

theta n, this is going to be constant.

And so we need to maintain this property. But as long as you set your table size to

the right value, to be roughly n, this will be constant. And so the running time of an

operation, insert, delete, and search-- Well, search is really the hardest because

when you want to search for a key, you map it into your table, then you walk the

linked list and look for the key that you're searching for.

Now is this the key you're searching for? No, it's not the key you're searching for. Is

this the key you're searching for? Those are not the keys you're searching for. You

keep going. Either you find your key or you don't. But in the worst case, you have to

walk the entire list.

Sorry for the bad Star Trek reference-- Star Wars. God. I'm not awake. All right.

In general, the running time, in the worst case, is 1 plus the length of your chain.

OK. So it's going to be 1 plus alpha. Why do I write one?

15



Well, because alpha can be much smaller than 1, in general. And you always have

to pay the cost of computing the hash function. We're going to assume that takes

constant time. And then you have to follow the first pointer.

So you always pay constant time, but then you also pay alpha. That's your expected

life. OK. That's the analysis. It's super simple.

If you assume Simple Uniform Hashing, it's clear, as long as your load factor is

constant, m theta n, you get constant running time for all your operations. Life is

good. This is the intuition of why hashing works.

It's not really why hashing works. But it's about as far as we're going to get in 006.

I'm going to tell you a little bit more about why hashing is actually good to practice

and in theory. What are we up to?

Last topic is hash functions. The one remaining thing is how do I construct h? How

do I actually map from this giant universe of keys to this small set of slots in the

table, there's m of them?

I'm going to give you three hash functions, two of which are, let's say, common

practice, and the third of which is actually theoretically good. So the first two are not

good theoretically. You can prove that they're bad, but at least they give you some

flavor, and they're still common in practice because a lot of the time they're OK, but

you can't really prove much about them. OK.

So first method, sort of the obvious one, called the division method. And if you have

a key, this could be a giant key, huge universe of keys, you just take that key,

modulo m, that gives you a number between zero and m minus 1. Done. It's so

easy.

I'm not going to tell you in detail why this is a bad method. Maybe you can think

about it. It's especially bad if m has some common factors with k.

Like, let's say k is even always, and m is even also because you say, oh, I'd like a

table the size of power of two. That seems natural. Then that will be really bad

16



because you'll use only half the table. There are lots of situations where this is bad.

In practice, it's pretty good. If m is prime, you always choose a prime table size, so

you don't have those common factors. And it's not very close to a power of 2 or

power of 10 because real world powers of 2's and 10's are common. But it's very

hackish, OK? It works a lot of the time but not always.

A cooler method-- I think it's cooler-- still, you can't prove much about it-- Division

didn't seem to work so great, so how about multiplication? What does that mean?

Multiply by m, that wouldn't be very good. Now, it's a bit different.

We're going to take the key, multiply it by an integer, a, and then we're going to do

this crazy, crazy stuff. Take it mod 2 to the w and then shift it right, w minus r. OK.

What is w?

We're assuming that we're in a w-bit machine. Remember way back in models of

computation? Your machine has a word size, it's w bits. So let's suppose it's w bits.

So we have our key, k. Here it is. It's w bits long.

We take some number, a-- think of a as being a random integer among all possible

w bit integers. So it's got some zeros, it's got some ones. And I multiply these. What

does multiplication mean in binary? Well, I take one of these copies of k for each

one that's here.

So I'm going to take one copy here because there's a one there. I'm going to take

one copy here because there's a one there. And I'm going to take one copy here

because there's a one there. And on average, half of them will be ones.

So I have various copies of k, and then I just add them up. And you know, stuff

happens. I get some gobbledygook here. OK.

How big is it? In general, it's two words long. When I multiply two words I get two

words. It could be twice as long, in general. And what this business is doing is

saying take the right word, this right half here-- let the right word in, I guess, if you

see vampire movies-- and then shift right-- this is a shift right operation-- by w minus

17



r. I didn't even say what r is.

But basically, what I want is these bits. I want r bits here-- this is w bits. I want the

leftmost r bits of the rightmost w bits because I shift right here and get rid of all

these guys. r-- I should say, m, is two to the r. So I'm going to assume here I have a

table of size a power of 2, and then this number will be a number between 0 and m

minus 1. OK.

Why does this work? It's intuitive. In practice it works quite well because what you're

doing is taking a whole bunch of sort of randomly shifted copies of k, adding them

up-- you get carries, things get mixed up-- This is hashing. This is-- you're taking k,

sort of cutting it up while you're shifting it around, adding things and they collide,

and weird stuff happens.

You sort of randomize stuff. Out here, you don't get much randomization because

most-- like the last bit could just be this one bit of k. But in the middle, everybody's

kind of colliding together. And so intuitively, you're mixing lots of things in the center.

You take those r bits, roughly, in the center. That will be nicely mixed up.

And most of the time this works well. In practice it works well-- I have some things

written here. a better be odd, otherwise you're throwing away stuff. And it should not

be very close to a power of 2. But it should be in between 2 to the r minus 1 and 2

to the r. Cool.

One more. Again, theoretically, this can be bad. And I leave it as an exercise to find

situations, find key values where this does not do a good job.

The cool method is called universal hashing. This is something that's a bit beyond

the scope of 006. If you want to understand it better you should take 046. But I'll

give you the flavor and the method, one of the methods. There's actually many

ways to do this.

We see a mod m on the outside. That's just division method just to make the

number between 0 and a minus 1. Here's our key. And then there's these numbers

a and b. These are going to be random numbers between 0 and p minus 1.

18



What's p? Prime number bigger than the size of the universe. So it's a big prime

number. I think we know how to find prime numbers. We don't know in this class,

but people know how to find the prime numbers.

So there's a subroutine here, find a big prime number bigger than your universe. It's

not too hard to do that. We can do it in polynomial time. That's just set up.

You do that once for a given size table. And then you choose two random numbers,

a and b. And then this is the hash function, a times k plus b, mod p mod m. OK.

What does this do? It turns out-- here's the interesting part. For worst case keys, k1

and k2, that are distinct, the probability of h of k1 equaling h of k2 is 1 over n. So

probability of two keys that are different colliding is 1 over m, for the worst case

keys. What the heck does that mean? What's the probability over? Any

suggestions? What's random here?

AUDIENCE: a and b.

PROFESSOR: a and b. This is the probability over a and b. This is the probability over the choice

of your hash function. So it's the worst case inputs, worst case insertions, but

random hash function. As long as you choose your random hash function, the

probability of collision is 1 over m. This is the ideal situation

And so you can prove, just like we analyzed here-- It's a little more work. It's in the

notes. You use linearity of expectation. And you can prove, still, that the expected

length of a chain-- the expected number of collisions that a key has with another key

is the load factor, in the worst case, but in expectation for a given hash function. So

still, the expected length of a chain, and therefore, the expected running time of

hashing with chaining, using this hash function, or this collection of hash functions,

or a randomly chosen one, is constant for constant load factor.

And that's why hashing really works in theory. We're not going to go into details of

this again. Take 6.046 if you want to know. But this should make you feel more

comfortable. And we'll see other ways do hashing next class.

19



20


