Lecture 14: Graphs II: Depth-First Search

Lecture Overview

- Depth-First Search
- Edge Classification
- Cycle Testing
- Topological Sort

Recall:

- <u>graph search</u>: explore a graph e.g., find a path from start vertex *s* to a desired vertex
- adjacency lists: array Adj of |V| linked lists
 - for each vertex $u \in V$, $\operatorname{Adj}[u]$ stores u's neighbors, i.e., $\{v \in V \mid (u, v) \in E\}$ (just outgoing edges if directed)

For example:

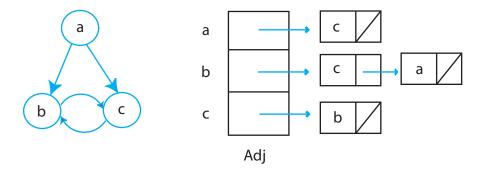


Figure 1: Adjacency Lists

Breadth-first Search (BFS):

Explore level-by-level from s — find shortest paths

Depth-First Search (DFS)

This is like exploring a maze.

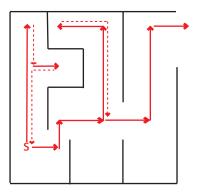


Figure 2: Depth-First Search Frontier

Depth First Search Algorithm

- follow path until you get stuck
- backtrack along breadcrumbs until reach unexplored neighbor
- recursively explore
- careful not to repeat a vertex

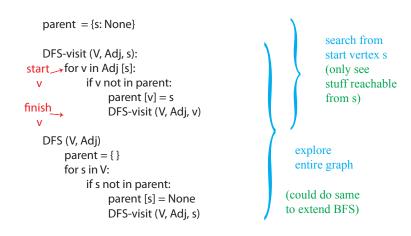


Figure 3: Depth-First Search Algorithm

Example

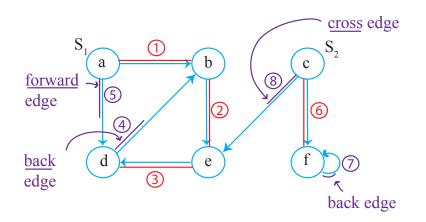


Figure 4: Depth-First Traversal

Edge Classification

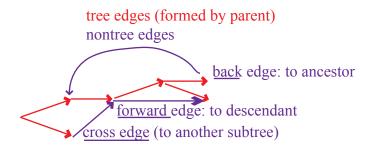


Figure 5: Edge Classification

- to compute this classification (back or not), mark nodes for duration they are "on the stack"
- only tree and back edges in undirected graph

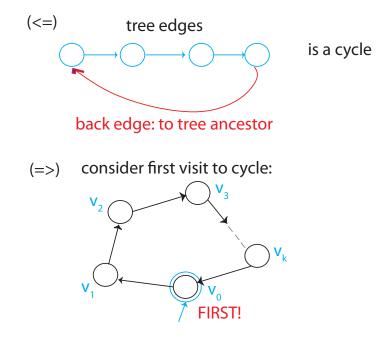
Analysis

- DFS-visit gets called with a vertex s only once (because then parent[s] set) \implies time in DFS-visit = $\sum_{s \in V} |\operatorname{Adj}[s]| = O(E)$
- DFS outer loop adds just O(V) $\implies O(V + E)$ time (linear time)

Cycle Detection

Graph G has a cycle \Leftrightarrow DFS has a back edge

Proof



- before visit to v_i finishes, will visit v_{i+1} (& finish): will consider edge (v_i, v_{i+1}) ⇒ visit v_{i+1} now or already did
- \implies before visit to v_0 finishes, will visit v_k (& didn't before)
- \implies before visit to v_k (or v_0) finishes, will see (v_k, v_0) as back edge

Job scheduling

Given Directed Acylic Graph (DAG), where vertices represent tasks & edges represent dependencies, order tasks without violating dependencies

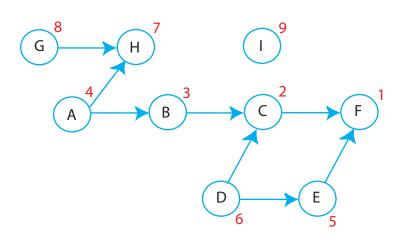


Figure 6: Dependence Graph: DFS Finishing Times

Source:

Source = vertex with no incoming edges = schedulable at beginning (A,G,I)

Attempt:

BFS from each source:

- from A finds A, BH, C, F
- from D finds D, BE, $CF \leftarrow slow \dots and wrong!$
- from G finds G, H
- from I finds I

Topological Sort

Reverse of DFS finishing times (time at which DFS-Visit(v) finishes)

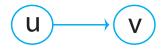
DFS-Visit(v)

order.append(v)

order.reverse()

Correctness

For any edge (u, v) - u ordered before v, i.e., v finished before u



- if u visited before v:
 - before visit to u finishes, will visit v (via (u, v) or otherwise)
 - $\implies v$ finishes before u
- if v visited before u:
 - graph is acyclic
 - $\implies u$ cannot be reached from v
 - \implies visit to v finishes before visiting u

MIT OpenCourseWare http://ocw.mit.edu

6.006 Introduction to Algorithms Fall 2011

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.