
MIT OpenCourseWare 
http://ocw.mit.edu

6.006 Introduction to Algorithms
Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu
http://ocw.mit.edu/terms


Lecture 19	 Dynamic Programming I of IV 6.006 Spring 2008


Lecture 19: Dynamic Programming I:


Memoization, Fibonacci, Crazy Eights, Guessing

Lecture Overview 

•	 Fibonacci Warmup 

•	 Memoization and subproblems


Shortest Paths
• 

•	 Crazy Eights 

•	 Guessing Viewpoint 

Readings 

CLRS 15 

Dynamic Programming (DP) 

Big idea: :hard yet simple 

•	 Powerful algorithmic design technique 

•	 Large class of seemingly exponential problems have a polynomial solution (“only”) 
via DP 

•	 Particularly for optimization problems (min / max) (e.g., shortest paths) 

* DP ≈ “controlled brute force” 
* DP ≈ recursion + re-use 

Fibonacci Numbers 

F1 = F2 = 1; Fn = Fn−1 + Fn−2 

Naive Algorithm 

follow recursive definition 

fib(n): 
if n ≤ 2: return 1 
else return fib(n − 1) + fib(n − 2) 

= ⇒ T (n) = T (n − 1) + T (n − 2) + O(1) ≈ φn 

≥ 2T (n − 2) + O(1) ≥ 2n/2 

EXPONENTIAL - BAD! 

1 



� �� � 

Lecture 19	 Dynamic Programming I of IV 6.006 Spring 2008


Fn

Fn-1 Fn-2

Fn-2
Fn-3

Fn-3 Fn-4

Figure 1: Naive Fibonacci Algorithm  

Simple Idea 

memoize 

memo = { } 
fib(n): 

if n in memo: return memo[n] 
else: if n ≤ 2 : f = 1 

else: f = fib(n − 1) + fib(n − 2) 

free 
memo[n] = f 
return f 

T (n) = T (n − 1) + O(1) = O(n) 

[Side Note: There is also an O(lg n)- time algorithm for Fibonacci, via different techniques] 

* DP ≈ recursion + memoization 

• remember (memoize) previously solved “subproblems” that make up problem 

– in Fibonacci, subproblems are F0, F1, , Fn· · · 

• if subproblem already solved, re-use solution 

* =	 time = � of subproblems time/subproblem⇒	 · 

•	 – in fib: � of subproblems is O(n) and time/subproblem is O(1) - giving us a total 
time of O(n). 

2 



���


���


� ��
 � � ��


Lecture 19	 Dynamic Programming I of IV 6.006 Spring 2008


Shortest Paths


Recursive formulation: • 
δ(s, t) = min{w(s, v) + δ(v, t)
 (s, v) � E}


does this work with memoization? • 
no, cycles = infinite loops (see Figure 2). ⇒ 

ts

Figure 2: Shortest Paths 

•	 in some sense necessary for neg-weight cycles 

•	 works for directed acyclic graphs in O(V + E) 
(recursion effectively DFS/topological sort) 

•	 trick for shortest paths: removing cyclic dependency. 

– δk(s, t) = shortest path using ≤ k edges 
= min{δk−1(s, t)} ∪ {w(s, v) + δk−1(v, t) (s, v) � E}


time subproblems time/subproblem�= � 

. . . except δk(t, t) = φ, δφ(s, t) = ∞ if s =� t 

– δ(s, t) = δn−1(s, t) assuming no negative cycles 

=
⇒
 ·


for3) s,t,k�··· 

= O(V deg(V )) = O(V E)· 
V 

* Subproblem dependency should be acyclic. 

really O(n2) O(n) really degV···O(n

3




•	 � �� � 

Lecture 19	 Dynamic Programming I of IV 6.006 Spring 2008


Crazy Eights Puzzle 

•	 given a sequence of cards c[φ], c[1], · · · , c[n − 1]

e.g., 7♥, 6♥, 7♦, 3♦, 8♣, J♠


•	 find longest left-to-right “trick” (subsequence) 

c[i1], c[i2], c[ik] (i1 < i2 < ik)· · ·	 · · · 
where c[ij ] & c[ij+1] “match” for all j

have some suit or rank or one has rank 8


recursive formulation: • 

trick(i) = length of best trick starting at c[i] 
= 1 + max(trick(j) for j in range(i + 1, n) if match (c[i], c[j])) 

best = max(trick(i) for i in range(n)) 

•	 memoize: trick(i) depends only on trick(> i) 

= time = � subproblems time/subproblem⇒ � �� � 
· � �� � 

O(n) O(n) 

= O(n2) (to find actual trick, trace through max’s) 

“Guessing” Viewpoint 

•	 what is the first card in best trick? guess!

i.e., try all possibilities & take best result

- only O(n) choices


•	 what is next card in best trick from i? guess! 

–	 if you pretend you knew, solution becomes easy (using other subproblems) 

–	 actually pay factor of O(n) to try all 

* use only small � choices/guesses per subproblem 

poly(n)∼O(1) 

4



