MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 19: Dynamic Programming I:

 Memoization, Fibonacci, Crazy Eights, Guessing
Lecture Overview

- Fibonacci Warmup
- Memoization and subproblems
- Shortest Paths
- Crazy Eights
- Guessing Viewpoint

Readings

CLRS 15

Dynamic Programming (DP)

Big idea: :hard yet simple

- Powerful algorithmic design technique
- Large class of seemingly exponential problems have a polynomial solution ("only") via DP
- Particularly for optimization problems ($\min / \max)$ (e.g., shortest paths)
* $\mathrm{DP} \approx$ "controlled brute force"
* $\mathrm{DP} \approx$ recursion + re-use

Fibonacci Numbers

$$
F_{1}=F_{2}=1 ; \quad F_{n}=F_{n-1}+F_{n-2}
$$

Naive Algorithm
follow recursive definition

$$
\begin{aligned}
& \underline{\mathrm{fib}}(n): \\
& \text { if } n \leq 2: \text { return } 1 \\
& \text { else return fib }(n-1)+\mathrm{fib}(n-2) \\
& \Longrightarrow T(n)=T(n-1)+T(n-2)+O(1) \approx \phi^{n} \\
& \geq 2 T(n-2)+O(1) \geq 2^{n / 2} \\
& \quad \text { EXPONENTIAL - BAD! }
\end{aligned}
$$

Figure 1: Naive Fibonacci A Igorithm

Simple Idea

memoize

$$
\left.\begin{array}{l}
\operatorname{memo}=\{ \} \\
\text { fib }(n): \\
\quad \text { if } n \text { in memo: return memo }[n] \\
\quad \text { else: if } n \leq 2: f=1 \\
\quad \text { else: } f=\operatorname{fib}(n-1)+\underbrace{\operatorname{fib}(n-2)}_{\text {free }} \\
\quad \\
\quad \text { memo }[n]=f \\
\quad \\
\quad \text { return } f
\end{array}\right\}
$$

[Side Note: There is also an $O(\lg n)$ - time algorithm for Fibonacci, via different techniques]

* $\mathrm{DP} \approx$ recursion + memoization
- remember (配moize) previously solved "subproblems" that make up problem
- in Fibonacci, subproblems are $F_{0}, F_{1}, \cdots, F_{n}$
- if subproblem already solved, re-use solution
$* \Longrightarrow$ time $=\sharp$ of subproblems \cdot time/subproblem
- - in fib: \sharp of subproblems is $O(n)$ and time/subproblem is $O(1)$ - giving us a total time of $O(n)$.

Shortest Paths

- Recursive formulation:
$\delta(s, t)=\min \{w(s, v)+\delta(v, t) \mid(s, v) \epsilon E\}$
- does this work with memoization?
no, cycles \Longrightarrow infinite loops (see Figure 2).

(t)

Figure 2: Shortest Paths

- in some sense necessary for neg-weight cycles
- works for directed acyclic graphs in $O(V+E)$ (recursion effectively DFS/topological sort)
- trick for shortest paths: removing cyclic dependency.
- $\delta_{k}(s, t)=$ shortest path using $\leq k$ edges
$=\min \left\{\delta_{k-1}(s, t)\right\} \cup\left\{w(s, v)+\delta_{k-1}(v, t) \mid(s, v) \epsilon E\right\}$
\ldots except $\delta_{k}(t, t)=\phi, \delta_{\phi}(s, t)=\infty$ if $s \neq t$
$-\delta(s, t)=\delta_{n-1}(s, t)$ assuming no negative cycles

$$
\begin{aligned}
\Longrightarrow \text { time } & =\underbrace{\# \text { subproblems }}_{O\left(n^{3}\right) \text { for } s, t, k \cdots \text { really } O\left(n^{2}\right)} \cdot \underbrace{\text { time/subproblem }}_{O(n) \cdots \text { really deg } V} \\
& =O\left(V \cdot \sum_{V}^{\operatorname{deg}(V))=O(V E)}\right.
\end{aligned}
$$

* Subproblem dependency should be acyclic.

Crazy Eights Puzzle

- given a sequence of cards $c[\phi], c[1], \cdots, c[n-1]$
e.g., $7 \circlearrowleft, 6 \circlearrowleft, 7 \diamond, 3 \diamond, 8 \mathbf{4}, J$
- find longest left-to-right "trick" (subsequence)

$$
\begin{aligned}
& c\left[i_{1}\right], c\left[i_{2}\right], \cdots c\left[i_{k}\right] \quad\left(i_{1}<i_{2}<\cdots i_{k}\right) \\
& \text { where } c\left[i_{j}\right] \& c\left[i_{j+1}\right] \text { "match" for all } j
\end{aligned}
$$

have some suit or rank or one has rank 8

- recursive formulation:

$$
\begin{aligned}
\operatorname{trick}(i) & =\text { length of best trick starting at } c[i] \\
& =1+\max (\operatorname{trick}(j) \text { for } j \text { in range }(i+1, n) \text { if match }(c[i], c[j])) \\
\text { best } & =\max (\operatorname{trick}(i) \text { for } i \text { in range }(n))
\end{aligned}
$$

- memoize: $\operatorname{trick}(i)$ depends only on $\operatorname{trick}(>i)$

$$
\begin{aligned}
\Longrightarrow \text { time } & =\underbrace{\sharp \text { subproblems }}_{O(n)} \cdot \underbrace{\text { time/subproblem }}_{O(n)} \\
& \left.=O\left(n^{2}\right) \quad \text { (to find actual trick, trace through max's }\right)
\end{aligned}
$$

"Guessing" Viewpoint

- what is the first card in best trick? guess!
i.e., try all possibilities \& take best result
- only $O(n)$ choices
- what is next card in best trick from i ? guess!
- if you pretend you knew, solution becomes easy (using other subproblems)
- actually pay factor of $O(n)$ to try all
- * use only small \sharp choices/guesses per subproblem

$$
\overbrace{\operatorname{poly}(n) \sim O(1)}
$$

