
MIT OpenCourseWare 
http://ocw.mit.edu 

6.006 Introduction to Algorithms 
Spring 2008 

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 

http://ocw.mit.edu/OcwWeb/web/terms/terms/index.htm
http://ocw.mit.edu/


6.006 Recitation

Build 2008.38




6.006 Proudly Presents


• Warmup: Maxing out sums 

• Fun:Tetris pwnage 

• Bonus: 

• Pwn Mario v2: mushrooms, monsters 



Max. Sum Sub-array 

• a is a list of real numbers 

• want i, j so that ∑a[i:j] is 
as large as possible 

• want to compute this as 
fast as possible 

• answer for this case 

• i = 2 

• j = 6 

• sum = 187 

i 0 1 2 3 4 5 6 7 8 9 
a[i] 31 -41 59 26 -53 58 97 -93 -23 84 



Max. Sum Sub-array: 
Naive Solution 

• max_sum, max_i, max_j = 0, 0, 0 

• for i in 0:len(a) 

• for j in i:len(a) 

• if max_sum < ∑a[i:j] 

• max_sum, max_i, max_j = ∑a[i:j], i, j 

i 0 1 2 3 4 5 6 7 8 9 
a[i] 31 -41 59 26 -53 58 97 -93 -23 84 



Running Time for

Naive Solution


• i, j go through all possible intervals a[i:j]


• O(N2) intervals 

• evaluating ∑a[i:j] at each interval 

• O(N) work per interval 

• O(N3) total 



Max. Sub-Array:

Smarter Solution A


• Notice that ∑a[i:j] = ∑a[i:j-1] + a[j] 

• Rewrite inner block to eliminate computing 
∑a[i:j], replace with a running sum 

• Running time: work per interval drops to 
O(1), total work drops to O(N2) 



Max. Sub-Array:

Smarter Solution B


• Hints 

• we’re using a ‘fancy’ data structure 

• s[i] = ∑a[0:i] 

• again, we’re trying to cut the work per 
interval 



Max. Sub-Array:

Smarter Solution B


• Notice that ∑a[i:j] = ∑a[0:j] - ∑a[0:i-1]


• Pre-compute ∑a[0:i] into s[i] 

• Rewrite the inner block of the naive 
algorithm to compute ∑a[i:j] in O(1) 

• Running time: again O(N2) 



Max. Sub-Array:

Uber-Pro Solution Hint


• Hint: we will go through the motions of DP,

but arrive at a very interesting conclusion


• Hint II: so start thinking of the optimal sub-
structure 



Max. Sub-Array:

Uber-Pro Solution I


• Problem: the max. sum sub-array in a 

• Sub-problem 
s[i] = max. sum sub-array ending at a[i] 

• Optimal sub-structure: if the max. sub-array 
includes a[i], it starts with the max. sum 
sub-array ending at a[i] 



Max. Sub-Array:

Uber-Pro Solution II


• s[i] = max(s[i - 1] + a[i], a[i]) 

• So we keep adding to the current sub-array

until the sub-array sum becomes negative


• Discussion: bottom-up implementation, 
constant-space implementation 



Tetris Pwnage:

This is How Pros Do It

•	 For each piece 

1. Instantly rotate and move the piece 

2. Let the piece drop 

•	 Don’t care about making lines disappear; if 
you pwn it, they will come 

•	 Last for as many pieces as possible 



Tetris Pwnage:

Formal Problem


• Board of width N 

• K pieces, each of its own 
shape 

• Must fit as many pieces 
as possible 

• For each piece, must 
return rotation and 
position where it falls 
from 



Tetris Pwnage:

The Vision


This is a game. Act accordingly.




Tetris Pwnage:

The Approach


1. Find all the variables that make a position


2. Reduce the position representation 

3. Use BFS 

4. Figure out a way to do this bottom-up 



Tetris Pwnage:

The Solution I


• A configuration is the # 
of pieces on the board 
and the “skyline” 

• Pieces can’t go through 
other pieces, so it 
doesn’t matter what’s 
under the “skyline” 

• Example at the right: 6 
pieces, (5 4 4 5 1 4 4) 



Tetris Pwnage:

The Solution II


• Bottom-line solution: 
configurations of P 
pieces only depend on 
configurations of P-1 
pieces 

• d[p][skyline] = 1 if can 
use p pieces to achieve 
the given skyline 



Bonus Discussion:

Mario v2


• Monsters 1...m patrol platforms 

• moster i moves between platforms m[i] 
[0], m[i][1]...m[i][mpi], 1≤ mpi ≤ 4 

• Special platforms contain mushrooms 

• mushroom state is an extra life - lost 
when in the same position as a monster 




