MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 12: Searching I: Graph Search and Representations

Lecture Overview: Search 1 of 3

- Graph Search
- Applications
- Graph Representations
- Introduction to breadth-first and depth-first search

Readings

CLRS 22.1-22.3, B. 4

Graph Search

Explore a graph e.g., find a path from start vertices to a desired vertex
Recall: graph $G=(V, E)$

- $V=$ set of vertices (arbitrary labels)
- $E=$ set of edges i.e. vertex pairs (v, w)
- ordered pair \Longrightarrow directed edge of graph
- unordered pair \Longrightarrow undirected
e.g.

Figure 1: Example to illustrate graph terminology

Applications:

There are many.

- web crawling (How Google finds pages)
- social networking (Facebook friend finder)
- computer networks (Routing in the Internet) shortest paths [next unit]
- solving puzzles and games
- checking mathematical conjectures

Pocket Cube:

Consider a $2 \times 2 \times 2$ Rubik's cube

Figure 2: Rubik's Cube

- Configuration Graph:
- vertex for each possible state
- edge for each basic move (e.g., 90 degree turn) from one state to another
- undirected: moves are reversible
- Puzzle: Given initial state s, find a path to the solved state
- $\#$ vertices $=8!.3^{8}=264,539,520$ (because there are 8 cubelets in arbitrary positions, and each cubelet has 3 possible twists)

Figure 3: Illustration of Symmetry

- can factor out 24 -fold symmetry of cube: fix one cubelet

$$
8^{11} .3 \Longrightarrow 7!.3^{7}=11,022,480
$$

- in fact, graph has 3 connected components of equal size \Longrightarrow only need to search in one

$$
\Longrightarrow 7!.3^{6}=3,674,160
$$

"Geography" of configuration graph

Figure 4: Breadth-First Tree

distance	90° turns	$90^{\circ} \& 180^{\circ}$ turns
0	1	1
1	6	9
2	27	54
3	120	321
4	534	1,847
5	2,256	9,992
6	8,969	50,136
7	33,058	227,536
8	114,149	870,072
9	360,508	1,887,748
10	930,588	623,800
11	1,350,852	2,644 \leftarrow diameter
12	782,536	
13	90,280	
14	$276 \leftarrow$ diameter	
	3,674,160	3,674,160
		Wikipedia Pocket Cube

Cf. $3 \times 3 \times 3$ Rubik's cube: ≈ 1.4 trillion states; diameter is unknown! ≤ 26

Representing Graphs: (data structures)

Adjacency lists:

Array $A d j$ of $|V|$ linked lists

- for each vertex $u \epsilon V, \operatorname{Adj}[u]$ stores u 's neighbors, i.e., $\{v \epsilon V \mid(u, v) \epsilon E\}$. colorBlue (u, v) are just outgoing edges if directed. (See Fig. 5 for an example)
- in Python: $A d j=$ dictionary of list/set values vertex $=$ any hashable object (e.g., int, tuple)
- advantage: multiple graphs on same vertices

Figure 5: Adjacency List Representation

Object-oriented variations:

- object for each vertex u
- u.neighbors $=$ list of neighbors i.e., $\operatorname{Adj}[u]$

Incidence Lists:

- can also make edges objects (see Figure 6)
- u.edges $=$ list of (outgoing) edges from u.
- advantage: storing data with vertices and edges without hashing

Figure 6: Edge Representation

Representing Graphs: contd.

The above representations are good for for sparse graphs where $|E| \ll(|V|)^{2}$. This translates to a space requirement $=\Theta(V+E)$ (Don't bother with $|$.$| 's inside O / \Theta)$.

Adjacency Matrix:

- assume $V=\{1,2, \ldots,|v|\} \quad$ (number vertices)
- $A=\left(a_{i j}\right)=|V| \times|V|$ matrix where $i=$ row and $j=$ column, and

$$
a_{i j}= \begin{cases}1 & \text { if }(i, j) \epsilon \mathrm{E} \\ \phi & \text { otherwise }\end{cases}
$$

See Figure 7

- good for dense graphs where $|E| \approx(|V|)^{2}$
- space requirement $=\Theta\left(V^{2}\right)$
- cool properties like A^{2} gives length-2 paths and Google PageRank $\approx A^{\infty}$
- but we'll rarely use it Google couldn't; $|V| \approx 20$ billion $\Longrightarrow(|V|)^{2} \approx 4.10^{20}$ [50,000 petabytes]

Figure 7: Matrix Representation

Implicit Graphs:

$\operatorname{Adj}(u)$ is a function or u.neighbors/edges is a method \Longrightarrow "no space" (just what you need now)

High level overview of next two lectures:

Breadth-first search

Levels like "geography"

Figure 8: Illustrating Breadth-First Search

- frontier $=$ current level
- initially $\{s\}$
- repeatedly advance frontier to next level, careful not to go backwards to previous level
- actually find shortest paths i.e. fewest possible edges

Depth-first search

This is like exploring a maze.

- e.g.: (left-hand rule) - See Figure 9
- follow path until you get stuck
- backtrack along breadcrumbs until you reach an unexplored edge
- recursively explore it
- careful not to repeat a vertex

Figure 9: Illustrating Depth-First Search

