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Lecture 12: Searching I: Graph Search and


Representations


Lecture Overview: Search 1 of 3 

• Graph Search 

• Applications 

• Graph Representations 

• Introduction to breadth-first and depth-first search 

Readings 

CLRS 22.1-22.3, B.4 

Graph Search 

Explore a graph e.g., find a path from start vertices to a desired vertex 
Recall: graph G = (V, E) 

• V	 = set of vertices (arbitrary labels) 

•	 E = set of edges i.e. vertex pairs (v, w)


– ordered pair = directed edge of graph
⇒ 

– unordered pair = undirected ⇒ 

a b

c d

a

b c

UNDIRECTED DIRECTED

e.g. V = {a,b,c,d}
E = {{a,b},{a,c},
         {b,c},{b,d},
         {c,d}}

V = {a,b,c}
E = {(a,c),(b,c),
         (c,b),(b,a)}

Figure 1: Example to illustrate graph terminology 

1 



Lecture 12 Searching I: Graph Search & Representations 6.006 Spring 2008


Applications: 

There are many. 

•	 web crawling (How Google finds pages) 

•	 social networking (Facebook friend finder) 

•	 computer networks (Routing in the Internet) 
shortest paths [next unit] 

•	 solving puzzles and games 

•	 checking mathematical conjectures 

Pocket Cube: 

Consider a 2 × 2 × 2 Rubik’s cube 

Figure 2: Rubik’s Cube 

•	 Configuration Graph: 

–	 vertex for each possible state 

–	 edge for each basic move (e.g., 90 degree turn) from one state to another 

–	 undirected: moves are reversible 

•	 Puzzle: Given initial state s, find a path to the solved state 

•	 � vertices = 8!.38 = 264, 539, 520 (because there are 8 cubelets in arbitrary positions, 
and each cubelet has 3 possible twists) 

Figure 3: Illustration of Symmetry 
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• can factor out 24-fold symmetry of cube: fix one cubelet 

811 .3 = 7!.37 = 11, 022, 480
⇒ 

in fact, graph has 3 connected components of equal size = only need to search in • ⇒ 
one 

= 7!.36 = 3, 674, 160
⇒ 
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“Geography” of configuration graph


. . . “breadth-
first
tree”

possible 
first moves

reachable 
in two steps 
but not one

Figure 4: Breadth-First Tree 

� reachable configurations 

distance 90◦ turns 90◦ & 180◦ turns 
0 1 1 
1 6 9 
2 27 54 
3 120 321 
4 534 1,847 
5 2,256 9,992 
6 8,969 50,136 
7 33,058 227,536 
8 114,149 870,072 
9 360,508 1,887,748 
10 930,588 623,800 
11 1,350,852 2,644 diameter←
12 782,536 
13 90,280 
14 276 diameter←

3,674,160 3,674,160 
Wikipedia Pocket Cube 

Cf. 3 × 3 × 3 Rubik’s cube: ≈ 1.4 trillion states; diameter is unknown! ≤ 26 
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Representing Graphs: (data structures) 

Adjacency lists: 

Array Adj of | V | linked lists 

•	 for each vertex u�V, Adj[u] stores u’s neighbors, i.e., {v�V | (u, v)�E}. colorBlue(u, v) 
are just outgoing edges if directed. (See Fig. 5 for an example) 

•	 in Python: Adj = dictionary of list/set values vertex = any hashable object (e.g., int, 
tuple) 

•	 advantage: multiple graphs on same vertices 

a

b c

a

b

c

c

c

b

a

Adj

Figure 5: Adjacency List Representation 

Object-oriented variations: 

•	 object for each vertex u 

•	 u.neighbors = list of neighbors i.e., Adj[u] 

Incidence Lists: 

•	 can also make edges objects (see Figure 6) 

•	 u.edges = list of (outgoing) edges from u. 

•	 advantage: storing data with vertices and edges without hashing 
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e.a e.be

Figure 6: Edge Representation 

Representing Graphs: contd. 

The above representations are good for for sparse graphs where | E |� (| V |)2 . This 
translates to a space requirement = Θ(V + E) (Don’t bother with | . | ’s inside O/Θ). 

Adjacency Matrix: 

•	 assume V = {1, 2, . . . , |v|} (number vertices) 

•	 A = (aij ) = |V | × |V | matrix where i = row and j = column, and 

1	 if (i, j) � E 
aij = 

φ otherwise


See Figure 7.


•	 good for dense graphs where | E |≈ (| V |)2 

•	 space requirement = Θ(V 2) 

•	 cool properties like A2 gives length-2 paths and Google PageRank ≈ A∞ 

but we’ll rarely use it Google couldn’t; V |≈ 20 billion = (| V )2 ≈ 4.1020 •	
[50,000 petabytes] 

| ⇒ |

a

b c

A = ( (0 0 1
1 0 1
0 1 0

1 2 3
1

2

3

Figure 7: Matrix Representation 
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Implicit Graphs: 

Adj(u) is a function or u.neighbors/edges is a method = “no space” (just what you need ⇒
now) 

High level overview of next two lectures: 

Breadth-first search 

Levels like “geography” 

. . .

frontier

s

Figure 8: Illustrating Breadth-First Search 

frontier = current level • 

• initially {s} 

• repeatedly advance frontier to next level, careful not to go backwards to previous level 

• actually find shortest paths i.e. fewest possible edges 

Depth-first search 

This is like exploring a maze. 

• e.g.: (left-hand rule) - See Figure 9 

• follow path until you get stuck 

• backtrack along breadcrumbs until you reach an unexplored edge 
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• recursively explore it 

• careful not to repeat a vertex 

s

Figure 9: Illustrating Depth-First Search 
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