MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 18: Shortest Paths IV - Speeding up Dijkstra

Lecture Overview

- Single-source single-target Dijkstra
- Bidirectional search
- Goal directed search - potentials and landmarks

Readings

W agner, Dorothea, and Thomas W illhalm. "Speed-Up T echniques for Shortest-P ath Computations." In Lecture Notes in Computer Science: Proceedings of the 24th Annual Symposium on Theoretical Aspects of Computer Science. Berlin/ H eidelberg, M A: Springer, 2007. ISBN: 9783540709176. Read up to section 3.2.

DIJKSTRA single-source, single-target

$$
\begin{aligned}
& \text { Initialize() } \\
& Q \leftarrow V[G] \\
& \text { while } Q \neq \phi \\
& \quad \text { do } u \leftarrow \text { EXTRACT_MIN(Q) (stop if } u=t \text { !) } \\
& \quad \text { for each vertex } v \in \operatorname{Adj}[u] \\
& \quad \text { do } \operatorname{RELAX}(u, v, w)
\end{aligned}
$$

Observation: If only shortest path from s to t is required, stop when t is removed from Q, i.e., when $u=t$

DIJKSTRA Demo

A C E B D
D B E C A
4131522
E C A D B
7121822
22
$\begin{array}{lll}5 & 121316\end{array}$

Figure 1: Dijkstra Demonstration with Balls and String

Bi-Directional Search

Note: Speedup techniques covered here do not change worst-case behavior, but reduce the number of visited vertices in practice.

Figure 2: Bi-directional Search

Bi-D Search

Alternate forward search from s
backward search from t
(follow edges backward)
$d_{f}(u)$ distances for forward search $d_{b}(u)$ distances for backward search

Algorithm terminates when some vertex w has been processed, i.e., deleted from the queue of both searches, Q_{f} and Q_{b}

Figure 3: Bi-D Search

Subtlety: After search terminates, find node x with minimum value of $d_{f}(x)+d_{b}(x) . x$ may not be the vertex w that caused termination as in example to the left!
Find shortest path from s to x using Π_{f} and shortest path backwards from t to x using Π_{b}. Note: x will have been deleted from either Q_{f} or Q_{b} or both.

Figure 4: Forward and Backward Search
Minimum value for $d_{f}(x)+d_{b}(x)$ over all vertices that have been processed in at least one search

$$
d_{f}(u)+d_{b}(u)=3+6=9
$$

$$
\begin{gathered}
d_{f}\left(u^{\prime}\right)+d_{b}\left(u^{\prime}\right)=6+3=9 \\
d_{f}(w)+d_{b}(w)=5+5=10
\end{gathered}
$$

Goal-Directed Search or A^{*}

Modify edge weights with potential function over vertices.

$$
\bar{w}(u, v)=w(u, v)-\lambda(u)+\lambda(v)
$$

Search toward target:

Figure 5: Targeted Search

Correctness

$$
\bar{w}(p)=w(p)-\lambda_{t}(s)+\lambda_{t}(t)
$$

So shortest paths are maintained in modified graph with \bar{w} weights.

Figure 6: Modifying Edge W eights
To apply Dijkstra, we need $\bar{w}(u, v) \geq 0$ for all (u, v).
Choose potential function appropriately, to be feasible.

Landmarks

Small set of landmarks $L C V$. For all $u \epsilon V, l \epsilon L$, pre-compute $\delta(u, l)$. Potential $\lambda_{t}^{(l)}(u)=$ $\delta(u, l)=\delta(t, l)$ for each l.
CLAIM: $\lambda_{t}^{(l)}$ is feasible.

Feasibility

$$
\begin{aligned}
\bar{w}(u, v) & =w(u, v)-\lambda_{t}^{(l)}(u)+\lambda_{t}^{(l)}(v) \\
& =w(u, v)-\delta(u, l)+\delta(t, l)+\delta(v, l)-\delta(t, l) \\
& =w(u, v)-\delta(u, l)+\delta(v, l) \geq 0 \quad \text { by the } \Delta \text {-inequality } \\
\lambda_{t}(u) & =\max _{l \in L} \lambda_{t}^{(l)}(u) \text { is also feasible }
\end{aligned}
$$

