MIT OpenCourseWare <a href="http://ocw.mit.edu">http://ocw.mit.edu</a>

6.006 Introduction to Algorithms Spring 2008

For information about citing these materials or our Terms of Use, visit: <a href="http://ocw.mit.edu/terms">http://ocw.mit.edu/terms</a>.

# 

#### Lecture Overview

- Single-source single-target Dijkstra
- Bidirectional search
- Goal directed search potentials and landmarks

## Readings

Wagner, Dorothea, and Thomas Willhalm. "Speed-Up Techniques for Shortest-Path Computations." In *Lecture Notes in Computer Science: Proceedings of the 24th Annual Symposium on Theoretical Aspects of Computer Science*. Berlin/Heidelberg, MA: Springer, 2007. ISBN: 9783540709176. Read up to section 3.2.

## DIJKSTRA single-source, single-target

```
\begin{split} & \text{Initialize()} \\ & Q \leftarrow V[G] \\ & \text{while } Q \neq \phi \\ & \text{do } u \leftarrow \text{EXTRACT\_MIN(Q) (stop if } u = t!) \\ & \text{for each vertex } v \in \text{Adj}[u] \\ & \text{do RELAX}(u, v, w) \end{split}
```

**Observation:** If only shortest path from s to t is required, stop when t is removed from Q, i.e., when u = t

#### DIJKSTRA Demo



Figure 1: Dijkstra Demonstration with Balls and String

## **Bi-Directional Search**

Note: Speedup techniques covered here do not change worst-case behavior, but reduce the number of visited vertices in practice.



Figure 2: Bi-directional Search

#### Bi-D Search

Alternate forward search from s backward search from t (follow edges backward)  $d_f(u)$  distances for forward search  $d_b(u)$  distances for backward search

Algorithm terminates when some vertex w has been processed, i.e., deleted from the queue of both searches,  $Q_f$  and  $Q_b$ 



Figure 3: Bi-D Search

Subtlety: After search terminates, find node x with minimum value of  $d_f(x) + d_b(x)$ . x may not be the vertex w that caused termination as in example to the left!

Find shortest path from s to x using  $\Pi_f$  and shortest path backwards from t to x using  $\Pi_b$ . Note: x will have been deleted from either  $Q_f$  or  $Q_b$  or both.



Figure 4: Forward and Backward Search

Minimum value for  $d_f(x) + d_b(x)$  over all vertices that have been processed in at least one search

$$d_f(u) + d_b(u) = 3 + 6 = 9$$

$$d_f(u') + d_b(u') = 6 + 3 = 9$$

$$d_f(w) + d_b(w) = 5 + 5 = 10$$

## Goal-Directed Search or $A^*$

Modify edge weights with potential function over vertices.

$$\overline{w}(u,v) = w(u,v) - \lambda(u) + \lambda(v)$$

Search toward target:



Figure 5: Targeted Search

## Correctness

$$\overline{w}(p) = w(p) - \lambda_t(s) + \lambda_t(t)$$

So shortest paths are maintained in modified graph with  $\overline{w}$  weights.



Figure 6: Modifying Edge Weights

To apply Dijkstra, we need  $\overline{w}(u,v) \geq 0$  for all (u,v). Choose potential function appropriately, to be feasible.

## Landmarks

Small set of landmarks LCV. For all  $u\epsilon V, l\epsilon L$ , pre-compute  $\delta(u,l)$ . Potential  $\lambda_t^{(l)}(u)=\delta(u,l)=\delta(t,l)$  for each l. CLAIM:  $\lambda_t^{(l)}$  is feasible.

## Feasibility

$$\overline{w}(u,v) = w(u,v) - \lambda_t^{(l)}(u) + \lambda_t^{(l)}(v)$$

$$= w(u,v) - \delta(u,l) + \delta(t,l) + \delta(v,l) - \delta(t,l)$$

$$= w(u,v) - \delta(u,l) + \delta(v,l) \ge 0 \text{ by the } \Delta \text{ -inequality}$$

$$\lambda_t(u) = \max_{l \in L} \lambda_t^{(l)}(u) \text{ is also feasible}$$