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Lecture 16: Shortest Paths II: Bellman-Ford 

Lecture Overview 

Review: Notation • 

• Generic S.P. Algorithm 

• Bellman Ford Algorithm 

– Analysis 

– Correctness 

Recall: 

path p =	 < v0, v1, . . . , vk > 

(v1, vi+1) �E 0 ≤ i < k 
k−1

w(p) = w(vi, vi+1) 
i−0 

Shortest path weight from u to v is δ(u, v). δ(u, v) is ∞ if v is unreachable from u, undefined 
if there is a negative cycle on some path from u to v. 

u v

-ve

Figure 1: Negative Cycle  

Generic S.P. Algorithm 

Initialize:	 for v � V : 
d [v] ← ∞
Π [v]	 NIL← 

d[S] 0← 
Main:	 repeat 

select edge (u, v) [somehow] ⎡ 
if d[v] > d[u] + w(u, v) : 

“Relax” edge (u, v) ⎢⎣ d[v] ← d[u] + w(u, v) 
π[v] u← 

until you can’t relax any more edges or you’re tired or . . . 
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Complexity: 

Termination: Algorithm will continually relax edges when there are negative cycles present. 
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Figure 2: Algorithm may not terminate due to negative Cycles

Complexity could be exponential time with poor choice of edges. 

v0 v1 v2 v3 v4 v5 v6

4 8 10 12 13 14
13

10 11 12
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11

   (v0, v1)

    (v1, v2)
all of v2, vn

    (v0, v2)

 all of v2, vn

T(n) = θ(2n/2)  

T(n) = 3 + 2T(n-2)  

ORDER

Figure 3: Algorithm could take exponential time  
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5-Minute 6.006 

Here’s what I want you to remember from 6.006 five years after you graduate 

T(n)  =  C1 + C2T(n - C3) T(n)  =  C1 + C2T(n / C3)

Exponential Bad Polynomial Good

if  C2 > 1, trouble! 
Divide & Explode

         C2 > 1 okay provided C3 > 1
     if C3 > 1
Divide & Conquer

Figure 4: Exponential vs. Polynomial  

Bellman-Ford(G,W,S) 

Initialize () 
for i = 1 to | v | −1 

for each edge (u, v)�E: 
Relax(u, v) 

for each edge (u, v)�E 
do if d[v] > d[u] + w(u, v) 

then report a negative-weight cycle exists 

At the end, d[v] = δ(s, v), if no negative-weight cycles 
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End of pass 1
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End of pass 2 (and 3 and 4)

Figure 5: The numbers in circles indicate the order in which the δ values are computed  
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Theorem: 
If G = (V, E) contains no negative weight cycles, then after Bellman-Ford executes d[v] = 
δ(u, v) for all v�V . 
Proof: 
v�V be any vertex. Consider path p from s to v that is a shortest path with minimum 
number of edges. 

p:
S

v0

v1

v2

vk

v

δ (s, vi) = 
δ (s, vi-1) + w (vi-1,vi) 

Figure 6: Illustration for proof  

Initially d[v0] = 0 = δ(S, V0) and is unchanged since no negative cycles.

After 1 pass through E, we have d[v1] = δ(s, v1)

After 2 passes through E, we have d[v2] = δ(s, v2)

After k passes through E, we have d[vk] = δ(s, vk)

No negative weight cycles = ⇒ p is simple = ⇒ p has ≤| V | −1 edges


Corollary 

If a value d[v] fails to converge after | V | −1 passes, there exists a negative-weight cycle 
reachable from s. 
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