http://ocw.mit.edu
6.006 Introduction to Algorithms

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

6.006 Recitation

Build 2008. 16

Coming up next...

- Sorting
- Scenic Tour: Insertion Sort, Selection Sort, Merge Sort
- New Kid on the Block: Merge Sort
- Priority Queues
- Heap-Based Implementation

Sorting

- Input: array a of \mathbf{N} keys
- Output: a permutation as of a such that $\mathrm{a}_{\mathrm{s}}[\mathrm{k}]<\mathrm{a}_{\mathrm{s}}[\mathrm{k}+\mathrm{l}]$
- Stable sorting:

Sorting

- Maybe the oldest problem in CS
- Reflects our growing understanding of algorithm and data structures
- Who gives a damn?
- All those database tools out there

Sorting Algorithms: Criteria

What

Speed
Auxiliary Memory

Simple Method
\# comparisons, data moving

That's what 6.006 is about
External sorting, memory isn't that cheap
You're learning / coding / debugging / analyzing it
Keys may be large (strings) or slow to move (flash memory)

Insertion Sort

- Base: a[0:I] has I element \Rightarrow is sorted
- Induction: a[0:k] is sorted, want to grow to $a[0: k+l]$ sorted
- find position of a[k+l] in $\mathrm{a}[0: \mathrm{k}]$
- insert a[k+I] in a[0:k] |llllllll

Insertion Sort: Costs

- Find position for $\mathrm{a}[\mathrm{k}+\mathrm{l}]$ in $\mathrm{a}[0: \mathrm{k}]-\mathrm{O}(\log (\mathrm{k}))$
- use binary search
- Insert a[k+l] in a[0:k]: $\mathrm{O}(\mathrm{k})$
- shift elements
- Total cost: $\mathrm{O}(\mathrm{N} \cdot \log (\mathrm{N}))$ $+\mathrm{O}\left(\mathrm{N}^{2}\right)=\mathrm{O}\left(\mathrm{N}^{2}\right)$
- Pros:
- Optimal number of comparisons
- O(I) extra memory (no auxiliary arrays)
- Cons:
- Moves elements around a lot

Selection Sort

- Base case: $a[0: 0]$ has the smallest 0 elements in a
- Induction: $\mathrm{a}[0: \mathrm{k}]$ has the smallest k elements in a, sorted; want to expand to a[k+l]
- find $\min (a[k+1: N])$

$\begin{array}{llllllll}5 & 8 & 2 & 7 & 1 & 4 & 3 & 6\end{array}$

$\begin{array}{llllllll}1 & 8 & 2 & 7 & 5 & 4 & 3 & 6\end{array}$
$\begin{array}{llllllll}1 & 2 & 8 & 7 & 5 & 4 & 3 & 6\end{array}$
$\begin{array}{llllllll}1 & 2 & 3 & 7 & 5 & 4 & 8 & 6\end{array}$
$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 7 & 8 & 6\end{array}$
$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 7 & 8 & 6\end{array}$
$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 8 & 7\end{array}$

- swap it with $\mathrm{a}[\mathrm{k}+\mathrm{I}]$
$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$

Selection Sort: Costs

- find minimum in $\mathrm{a}[\mathrm{k}+\mathrm{I}: \mathrm{N}])-\mathrm{O}(\mathrm{N}-\mathrm{k})$
- scan every element
- swap with $\mathrm{a}[\mathrm{k}]-\mathrm{O}(\mathrm{I})$
- need help for this?
- Total cost: $\mathrm{O}\left(\mathrm{N}^{2}\right)+$ $\mathrm{O}(\mathrm{N})=\mathrm{O}\left(\mathrm{N}^{2}\right)$
- Cons:
- Pros:
- Optimal in terms of moving data around
- O(I) extra memory (no auxiliary arrays)
- Compares a lot

Merge-Sort

I. Divide

- Break into 2 sublists

2. Conquer

- I-elements lists are sorted

3. Profit

- Merge sorted sublists
$\begin{array}{llllllll}5 & 8 & 2 & 7 & 1 & 4 & 3 & 6\end{array}$

5	8	2	7	1	4	3	6
5	8	2	7	1	4	3	6
2	5	7	8	1	3	4	6

$\begin{array}{llllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8\end{array}$ There is no step 6 There is no step 7 There is no step 8

Merge-Sort: Cost

- You should be ashamed of if you don't know!
- $\mathrm{T}(\mathrm{N})=2 \mathrm{~T}(\mathrm{~N} / 2)+\Theta(\mathrm{N})$
- Recursion tree
- $O(\log (N))$ levels, O(N) work / level
- Total cost: $\mathrm{O}(\mathrm{N} \cdot \log (\mathrm{N}))$
- Pros:
- Optimal number of comparisons
- Fast
- Cons:
- O(N) extra memory (for merging)

BST Sort

- Build a BST out of the keys
- Use inorder traversal to obtain the keys in sorted order
- Or go to minimum(), then call successor() until it returns None

BST Sort: Cost

- Building the BST $\mathrm{O}(\mathrm{N} \cdot \log (\mathrm{N}))$
- Use a balanced tree
- Traversing the BST $\mathrm{O}(\mathrm{N})$
- Even if not balanced
- Total cost: $\mathrm{O}(\mathrm{N} \cdot \log (\mathrm{N}))$
- Cons:
- Pros:
- Fast (asymptotically)
- Large constant
- O(N) extra memory (left/right pointers)
- Complex code

Best of Breed Sorting

Speed

Auxiliary Memory
Code complexity

Comparisons

Data movement
$\mathrm{O}(\mathrm{N} \cdot \log (\mathrm{N}))$

$\mathrm{O}(\mathrm{I})$

Simple
$\mathrm{O}(\mathrm{N} \cdot \log (\mathrm{N}))$
$\mathrm{O}(\mathrm{N})$

Heap-Sort

Speed
$\mathrm{O}(\mathrm{N} \cdot \log (\mathrm{N}))$
\checkmark

Auxiliary Memory

$\mathrm{O}(\mathrm{I})$
\checkmark
Code complexity
Comparisons
$\mathrm{O}(\mathrm{N} \cdot \log (\mathrm{N}))$
\checkmark
Data movement
$\mathrm{O}(\mathrm{N})$
x

Heap-Sort uses a... Heap (creative, eh?)

- Max-Heap DT
- Almost complete binary tree
- Root node's key >= its children's keys
- Subtrees rooted at children are
Max-Heaps as well

Max-Heap Properties

- Very easy to find max. value
- look at root, doh
- Unlike BSTs, it's very hard to find any other value
- 6 (3 $3^{\text {rd }}$ largest key) at
 same level as I (min. key)

Heaps Inside Arrays

- THIS IS WHY HEAPS ROCK OVER BSTs
- No need to store a heap as a binary tree (left, right, parent pointers)
- Store keys inside array, in level-order traversal

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 8 | 5 | 7 | 3 | 1 | 4 | 6 | 2 |

Heaps Inside Arrays

- Work with arrays, think in terms of trees
- Left subtree of 8 is in bold... pretty mindboggling, eh?
- Prey that you don't have to debug this

1	2	3	4	5	6	7	8
7	5	8	3	1	4	6	2

Heaps Inside Arrays

- root index: I
- left_child(node_index):
- node_index•2
- right_child(node_index):
- node_index•2 + I
- parent(node_index):

- L node_index / 2」

Heaps Inside Arrays

- How to recall this
I. draw the damn heap (see right)

2. remember the concept (divide / multiply by 2)
3. work it out with the drawing

Heaps Inside Arrays: Python Perspective

- Lists are the closest thing to array
- Except they grow

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7 | 5 | 8 | 3 | 1 | 4 | 6 | 2 |

- Just like our growing hashes
- Amortized O(I) per operation

Messing with Heaps

- Goal:
I. Change any key

2. Restore Max-Heap invariants

Messing with Heaps: Percolate

- Issue
- key's node becomes smaller than children
- only possible after decreasing a key
- Solution
- percolate (huh??)

Messing with Heaps: Percolate

- Percolate:
- swap node's key with max (left child key, right child key)
- Max-Heap restored locally
- the child we didn't touch still roots a Max-Heap

Messing with Heaps: Percolate

- Percolate
- Issue: swapping decreased the key of the child touched
- child might not root a Max-Heap
- Solution: keep percolating

Messing with Heaps: Percolate

- Percolating is finite:
- leaves are always Max-Heaps
- Percolate cost:
- O(heap height node's level)
- $O(\log (N)-\log ($ node $))$

Messing with Heaps: Sift

- Issue
- key's node becomes larger than parent
- only possible after increasing a key
- Solution
- sift (huh??)

Messing with Heaps: Sift

- Sift
- swap node's key with parent's key
- parent's key was >= node's key, so must be >= children keys
- Max-Heap restored for node's subtree

Messing with Heaps: Sift

- Sift
- Issue: swapping increased the key of the parent
- parent might not root a Max-Heap
- Solution: keep sifting

Messing with Heaps: Sift

- Sifting is finite:
- root has no parent, so it can be increased at will
- Sift cost:
- O (height)
- O(log(node))

Messing with Heaps

- Update(node, new_key)
- old_key \leftarrow heap[node].key
- heap[node].key \leftarrow new_key
- if new_key < old_key: sift(node)
- else: percolate(node)

Messing with Heaps II

- Goal
- Want to shrink or grow the heap
- Growing:
- inserting keys
- Shrinking:
- deleting keys

Messing with Heaps II: One More Node

- Can always insert - ∞ at the end of the heap
- Max-Heap will not be violated
- Can only add to the end, otherwise we wouldn't get an (almost) complete binary tree

Messing with Heaps II: One More Node

- Insert any key
- insert $-\infty$ at the end of the heap
- change node's key to desired key
- sift

Messing with Heaps II: One More Node

- Insertion cost
- insert $-\infty$ at the end of the heap - $\mathrm{O}(\mathrm{I})$
- change node's key to new key - O(I)
- sift - $\mathrm{O}(\log (\mathrm{N}))$
- Total cost: $\mathrm{O}(\log (\mathrm{N}))$

Messing with Heaps II: One More Less Node

- Can always delete last node
- Max-Heap will not be violated
- It must be the last node, otherwise the binary tree won't be (almost) complete

Messing with Heaps II: One Mere Less Node

- Deleting root
- Replace root key with last key
- Delete last node
- Percolate

Messing with Heaps II: One More Less Node

- Deleting root cost
- Replace root key with last key - O(I)
- Delete last - O(I)
- Percolate - $\mathrm{O}(\log (\mathrm{N}))$
- Total cost: $\mathrm{O}(\log (\mathrm{N}))$

Messing with Heaps II: One Mere Less Node

- Deleting any node
- Change key to $+\infty$
- Sift
- Delete root

Messing with Heaps II: One Mere Less Node

- Deletion cost
- Change key to $+\infty$ O(I)
- Sift - $\mathrm{O}(\log (\mathrm{N}))$
- Remove root $\mathrm{O}(\log (\mathrm{N}))$
- Total cost: $\mathrm{O}(\log (\mathrm{N}))$

Heap-Sort: Everything Falls Into Place

- Start with empty heap
- Build the heap: insert a[0] ... a[N-I]
- Build the result: delete root until heap is empty, gets keys sorted in reverse order
- Use a to store both the array and the heap (explained in lecture)

Heap-Sort: Slightly Faster

- Build the heap faster: Max-Heapify
- Explained in lecture
- $\mathrm{O}(\mathrm{N})$ instead of $\mathrm{O}(\mathrm{N} \cdot \log (\mathrm{N}))$
- Total time for Heap-Sort stays $\mathrm{O}(\mathrm{N} \cdot \log (\mathrm{N}))$ because of N deletions
- Max-Heapify is very useful later

Priority Queues

- Data Structure
- insert(key) : adds to the queue
- $\max ()$: returns the maximum key
- delete-max() : deletes the max key
- delete(key) : deletes the given key
- optional (only needed in some apps)

Priority Queues with Max-Heaps

- Doh? (assuming you paid attention so far)
- Costs (see above line for explanations)
- insert: $\mathrm{O}(\log (\mathrm{N}))$
- max: O(I)
- delete-max: $\mathrm{O}(\log (\mathrm{N}))$
- delete: $O(\log (N))$ - only if given the index of the node containing the key

Cool / Smart Problem

- Given an array a of numbers, extract the \mathbf{k} largest numbers
- Want good running time for any \mathbf{k}

Cool / Smart Problem

- Small cases:
- $\mathrm{k}=\mathrm{I}$: scan through the array, find N
- k small
- try to scale the scan
- getting to $O(\mathrm{kN})$, not good

Cool / Smart Problem

- Solution: Heaps!
- build heap with Max-Heapify
- delete root k times
- $\mathrm{O}(\mathrm{k} \cdot \log (\mathrm{N}))$
- Bonus Solution: Selection Trees (we'll come back to this if we have time)

Discussion: Priority Queue Algorithms

- BSTs
- store keys in a BST
- Regular Arrays
- store keys in an array
- Arrays of Buckets
- $a[k]$ stores a list of keys with value k

