MIT OpenCourseWare <u>http://ocw.mit.edu</u>

6.006 Introduction to Algorithms Spring 2008

For information about citing these materials or our Terms of Use, visit: <u>http://ocw.mit.edu/terms</u>.

### 6.006 Recitation

Build 2008.16

# Coming up next...

#### Sorting

- Scenic Tour: Insertion Sort, Selection Sort, Merge Sort
- New Kid on the Block: Merge Sort
- Priority Queues
  - Heap-Based Implementation

# Sorting

#### • Input: array **a** of **N** keys

- Output: a permutation as of a such that
  as[k] < as[k+1]</li>
- Stable sorting:

# Sorting

- Maybe the oldest problem in CS
- Reflects our growing understanding of algorithm and data structures
- Who gives a damn?
  - All those database tools out there

# Sorting Algorithms: Criteria

| What | Why |
|------|-----|
|------|-----|

| Speed                         | That's what 6.006 is about                                 |
|-------------------------------|------------------------------------------------------------|
| Auxiliary<br>Memory           | External sorting, memory isn't that cheap                  |
| Simple Method                 | You're learning / coding /<br>debugging / analyzing it     |
| # comparisons,<br>data moving | Keys may be large (strings) or slow to move (flash memory) |

#### Insertion Sort

- Base: a[0:1] has 1
  element ⇒ is sorted
- Induction: a[0:k] is sorted, want to grow to a[0:k+1] sorted
  - find position of a[k+1] in a[0:k]
  - insert a[k+1] in a[0:k]

| 5 | 8 | 2 | 7 | Ι | 4 | 3 | 6 |
|---|---|---|---|---|---|---|---|
| 5 | 8 | 2 | 7 | Ι | 4 | 3 | 6 |
| 2 | 5 | 8 | 7 | I | 4 | 3 | 6 |
| 2 | 5 | 7 | 8 | I | 4 | 3 | 6 |
| Ι | 2 | 5 | 7 | 8 | 4 | 3 | 6 |
| I | 2 | 4 | 5 | 7 | 8 | 3 | 6 |
| Ι | 2 | 4 | 5 | 7 | 8 | 3 | 6 |
|   | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

### Insertion Sort: Costs

- Find position for a[k+1] in a[0:k] - O(log(k))
  - use binary search
- Insert a[k+1] in a[0:k]:
  O(k)
  - shift elements
- Total cost:  $O(N \cdot log(N))$ +  $O(N^2) = O(N^2)$

- Pros:
  - Optimal number of comparisons
  - O(I) extra memory (no auxiliary arrays)
- Cons:
  - Moves elements around a lot

### Selection Sort

- Base case: a[0:0] has the smallest 0 elements in a
- Induction: a[0:k] has the smallest k elements in a, sorted; want to expand to a[k+1]
  - find min(a[k+1:N])
  - swap it with a[k+1]

| 5 | 8 | 2 | 7 |   | 4 | 3 | 6 |
|---|---|---|---|---|---|---|---|
| I | 8 | 2 | 7 | 5 | 4 | 3 | 6 |
| I | 2 | 8 | 7 | 5 | 4 | 3 | 6 |
| I | 2 | 3 | 7 | 5 | 4 | 8 | 6 |
| Ι | 2 | 3 | 4 | 5 | 7 | 8 | 6 |
| Ι | 2 | 3 | 4 | 5 | 7 | 8 | 6 |
| I | 2 | 3 | 4 | 5 | 6 | 8 | 7 |
| I | 2 | 3 | 4 | 5 | 6 | 7 | 8 |

### Selection Sort: Costs

- find minimum in a[k+1:N]) - O(N-k)
  - scan every element
- swap with a[k] O(I)
  - need help for this?
- Total cost:  $O(N^2) + O(N) = O(N^2)$

- Pros:
  - Optimal in terms of moving data around
  - O(I) extra memory (no auxiliary arrays)

• Cons:

• Compares a lot

# Merge-Sort

#### I. Divide

- Break into 2 sublists
- 2. Conquer
  - I-elements lists are sorted
- 3. Profit
  - Merge sorted sublists

| 5 | 8  | 2    | 7    | Ι  | 4    | 3        | 6 |
|---|----|------|------|----|------|----------|---|
| 5 | 8  | 2    | 7    |    | 4    | 3        | 6 |
| 5 | 8  | 2    | 7    | I  | 4    | 3        | 6 |
| 2 | 5  | 7    | 8    | 1  | 3    | 4        | 6 |
| I | 2  | 3    | 4    | 5  | 6    | 7        | 8 |
|   | Th | nere | e is | no | step | 6        |   |
|   | Th | nere | e is | no | step | <b>7</b> |   |
|   | Th | nere | is   | no | step | 8        |   |

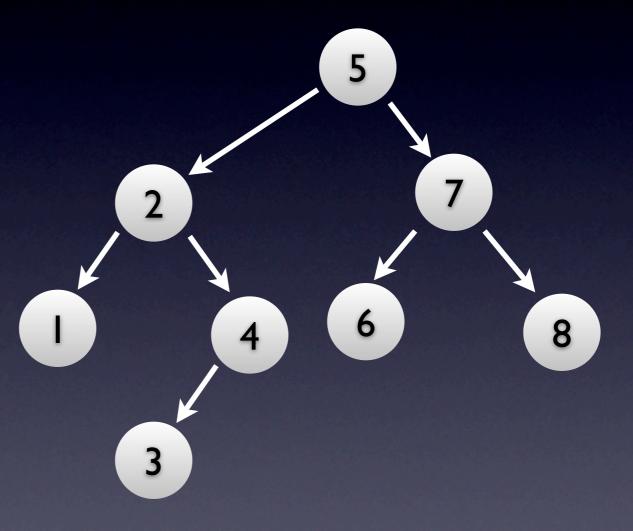
# Merge-Sort: Cost

- You should be ashamed of if you don't know!
- $T(N) = 2T(N/2) + \Theta(N)$
- Recursion tree
  - O(log(N)) levels,
    O(N) work / level
- Total cost:  $O(N \cdot log(N))$

- Pros:
  - Optimal number of comparisons
  - Fast
- Cons:
  - O(N) extra memory (for merging)

### BST Sort

- Build a BST out of the keys
- Use inorder traversal to obtain the keys in sorted order
  - Or go to minimum(), then call successor() until it returns None



### BST Sort: Cost

- Building the BST -O(N · log(N))
  - Use a balanced tree
- Traversing the BST O(N)
  - Even if not balanced
- Total cost:  $O(N \cdot log(N))$

- Pros:
  - Fast (asymptotically)
- Cons:
  - Large constant
  - O(N) extra memory (left/right pointers)
  - Complex code

## Best of Breed Sorting

Speed

 $O(N \cdot log(N))$ 

Auxiliary Memory

O(I)

Code complexity

Simple

Comparisons

 $O(N \cdot \log(N))$ 

Data movement

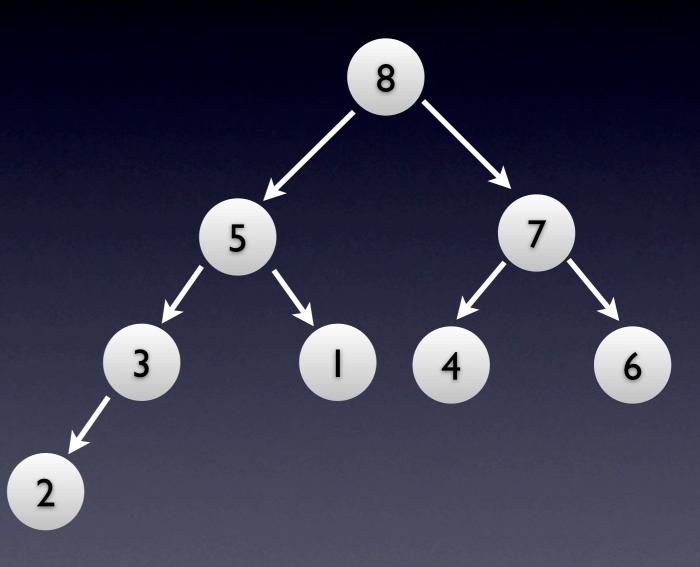
O(N)

Heap-Sort

| Speed            | $O(N \cdot log(N))$  | $\checkmark$ |
|------------------|----------------------|--------------|
| Auxiliary Memory | O(I)                 | $\checkmark$ |
| Code complexity  | Simple               | $\checkmark$ |
| Comparisons      | $O(N \cdot \log(N))$ | $\checkmark$ |
| Data movement    | O(N)                 | X            |

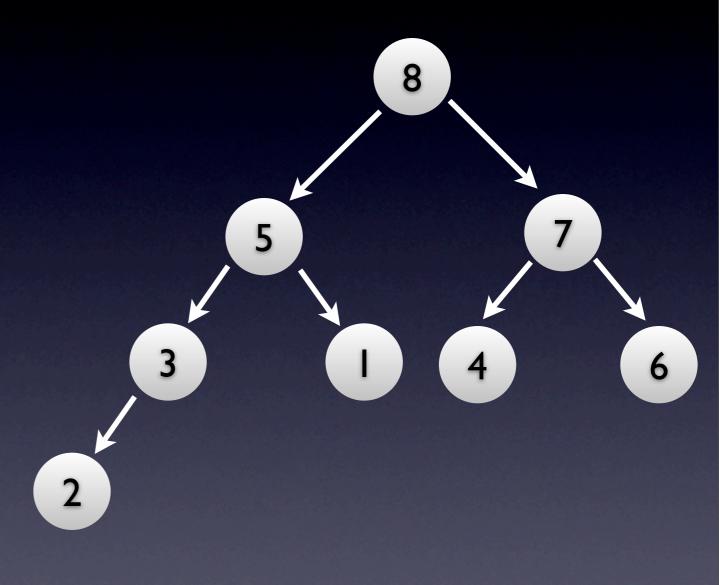
# Heap-Sort uses a... Heap (creative, eh?)

- Max-Heap DT
  - Almost complete binary tree
  - Root node's key >= its children's keys
  - Subtrees rooted at children are Max-Heaps as well

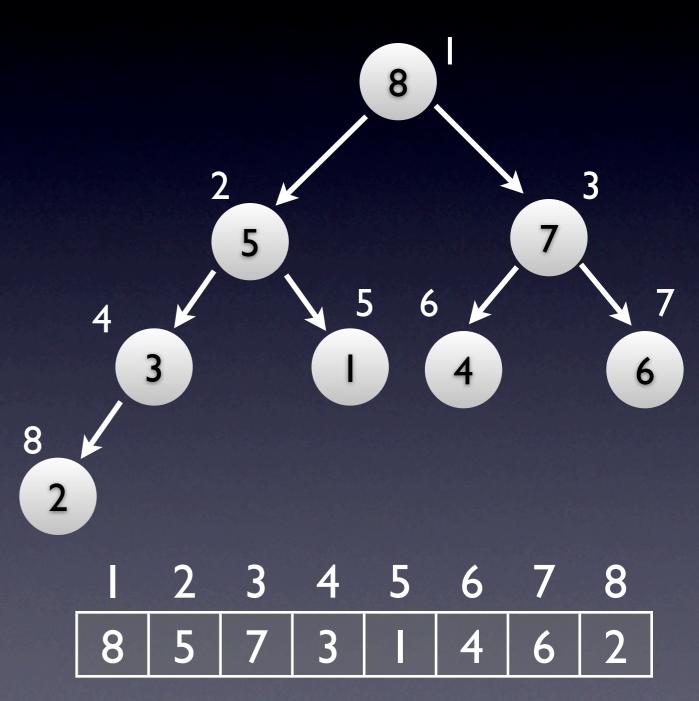


# Max-Heap Properties

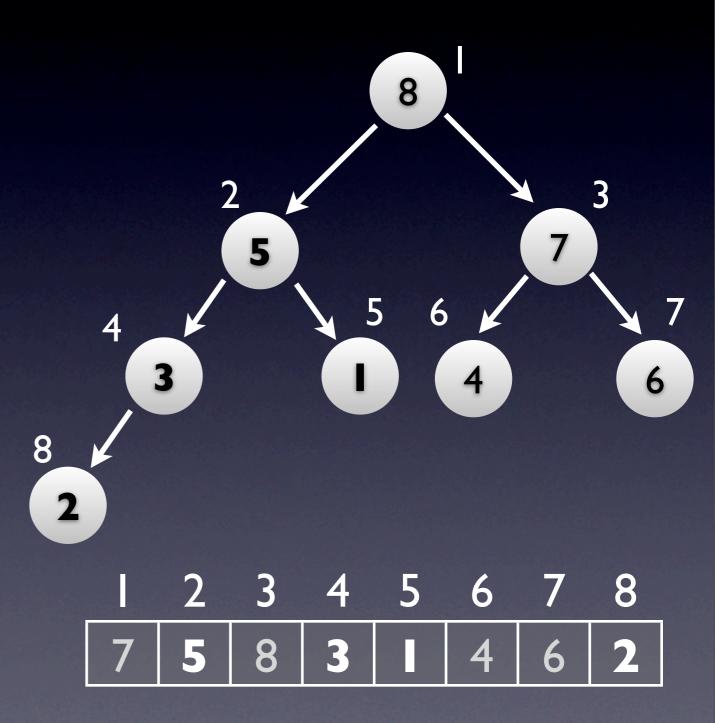
- Very easy to find max. value
  - look at root, doh
- Unlike BSTs, it's very hard to find any other value
  - 6 (3<sup>rd</sup> largest key) at same level as I (min. key)



- THIS IS WHY HEAPS ROCK OVER BSTs
  - No need to store a heap as a binary tree (left, right, parent pointers)
- Store keys inside array, in level-order traversal



- Work with arrays, think in terms of trees
  - Left subtree of 8 is in bold... pretty mindboggling, eh?
  - Prey that you don't have to debug this



• root index: I

• left\_child(node\_index):

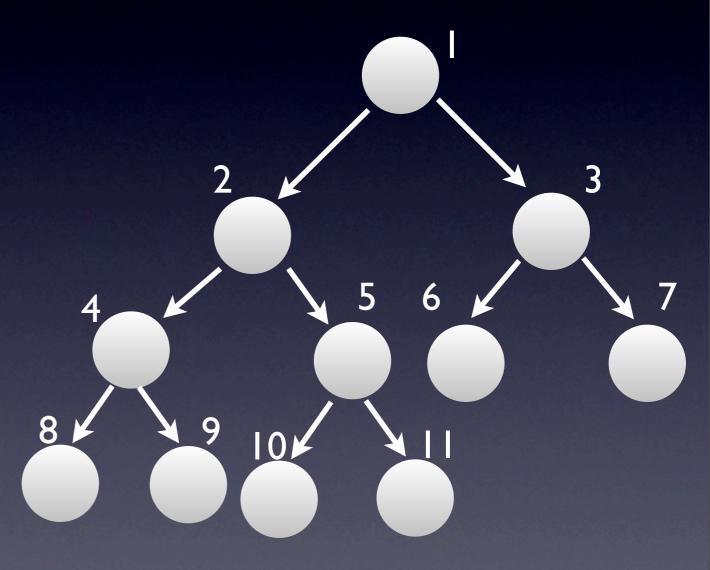
node\_index · 2

• right\_child(node\_index):

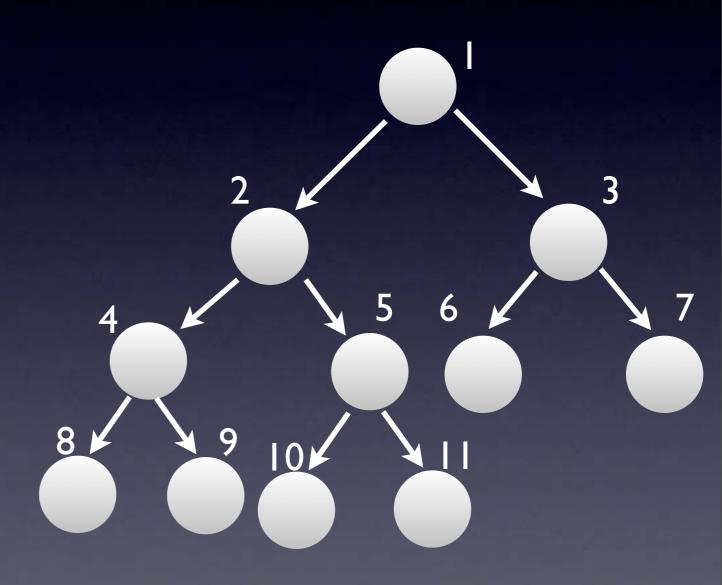
• node\_index $\cdot 2 + 1$ 

• parent(node\_index):

L node\_index / 2 ]



- How to recall this
  - I. draw the damn heap (see right)
  - remember the concept (divide / multiply by 2)
  - 3. work it out with the drawing



# Heaps Inside Arrays: Python Perspective

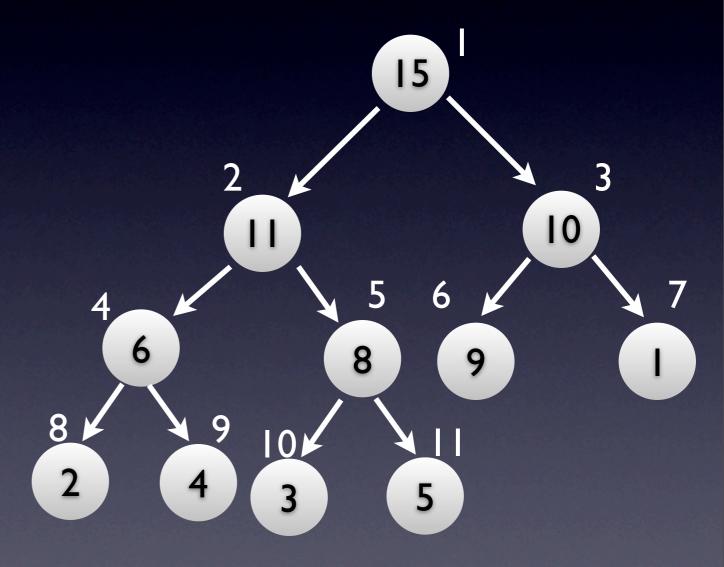
- Lists are the closest thing to array
- Except they grow
  - Just like our growing hashes
  - Amortized O(I) per operation

|   | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
|---|---|---|---|---|---|---|---|
| 7 | 5 | 8 | 3 |   | 4 | 6 | 2 |

# Messing with Heaps

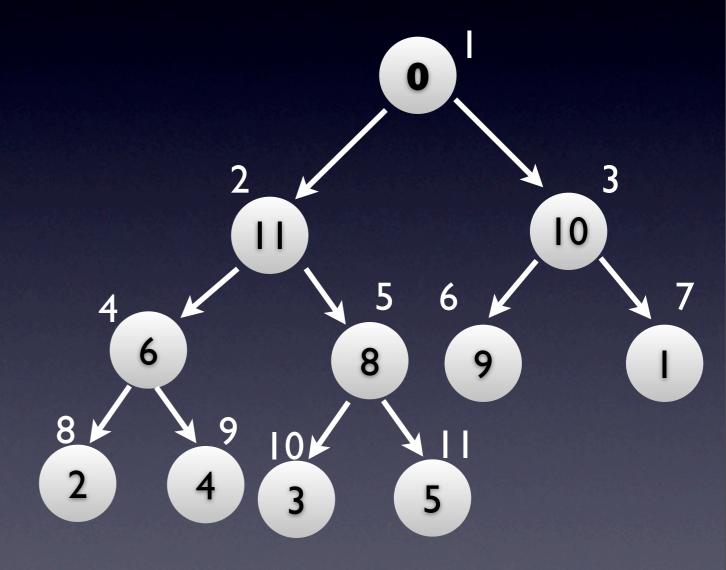


- I. Change any key
- 2. Restore Max-Heap invariants

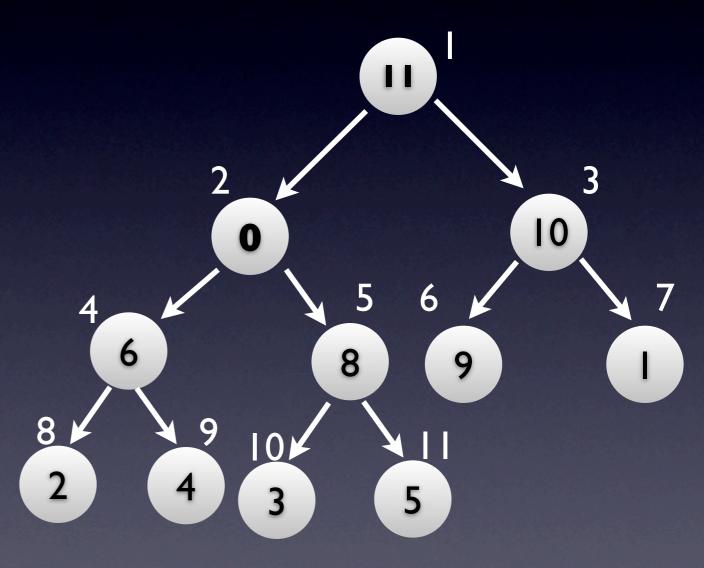


#### • Issue

- key's node becomes smaller than children
- only possible after decreasing a key
- Solution
  - percolate (huh??)

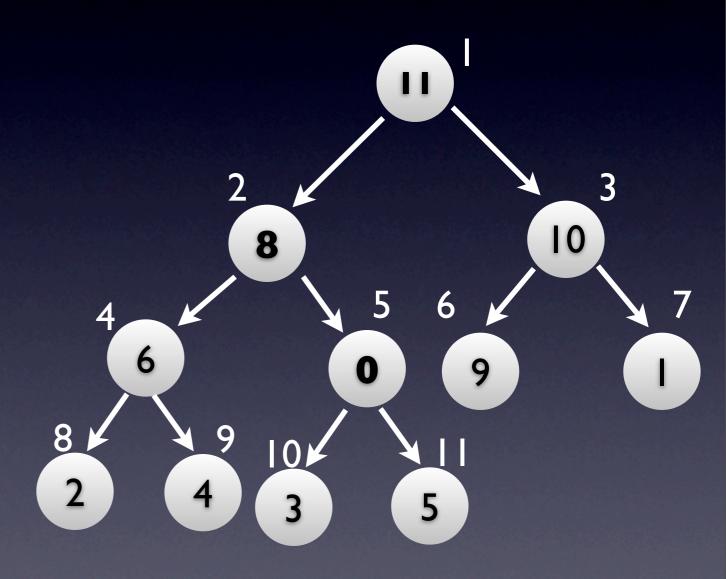


- Percolate:
  - swap node's key with max(left child key, right child key)
    - Max-Heap restored locally
    - the child we didn't touch still roots a Max-Heap



#### Percolate

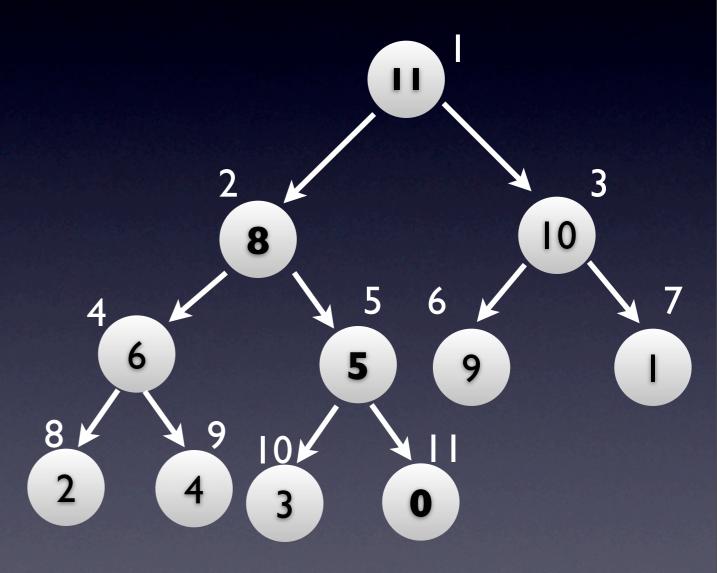
- Issue: swapping decreased the key of the child touched
  - child might not root a Max-Heap
- Solution: keep percolating



• Percolating is finite:

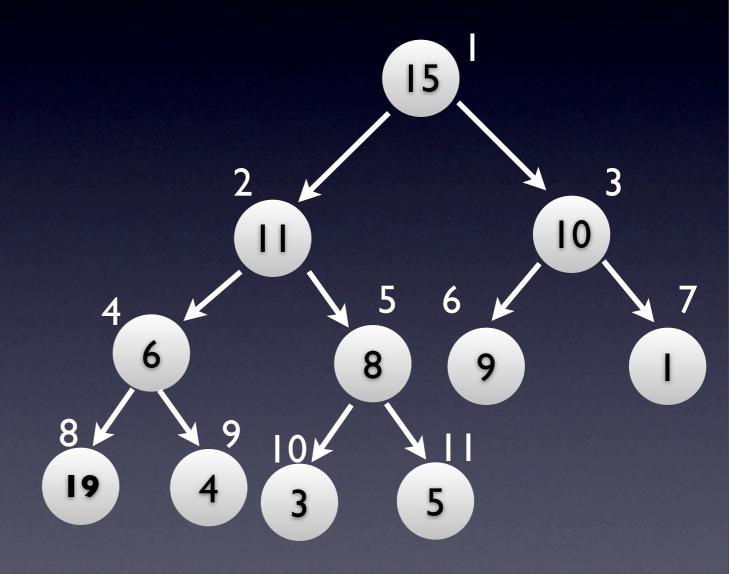
- leaves are always Max-Heaps
- Percolate cost:
  - O(heap height node's level)

O(log(N) - log(node))



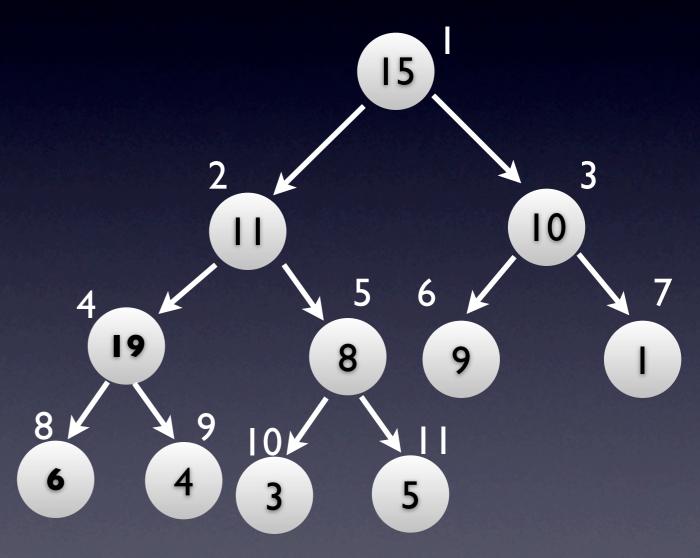
#### • Issue

- key's node becomes larger than parent
- only possible after increasing a key
- Solution
  - sift (huh??)



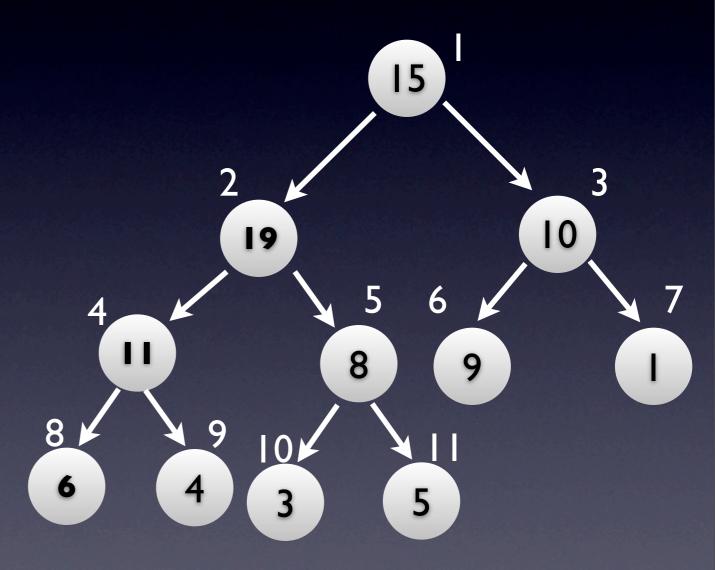
#### • Sift

- swap node's key with parent's key
- parent's key was >= node's key, so must be >= children keys
- Max-Heap restored for node's subtree

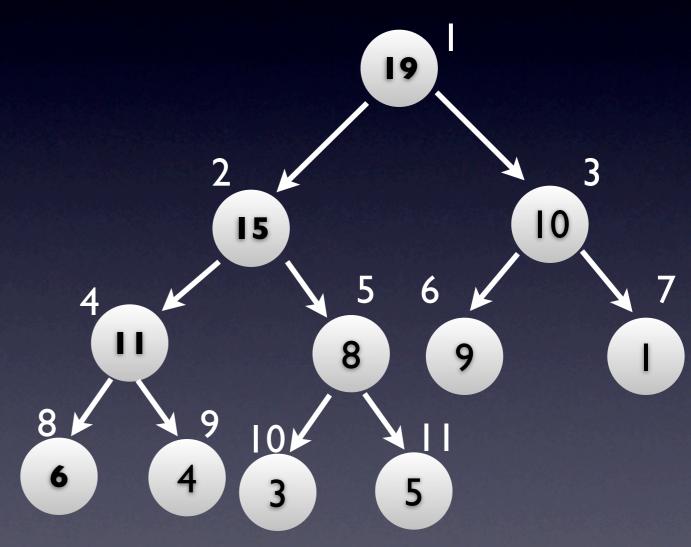




- Issue: swapping increased the key of the parent
  - parent might not root a Max-Heap
- Solution: keep sifting



- Sifting is finite:
  - root has no parent, so it can be increased at will
- Sift cost:
  - O(height)
  - O(log(node))



# Messing with Heaps

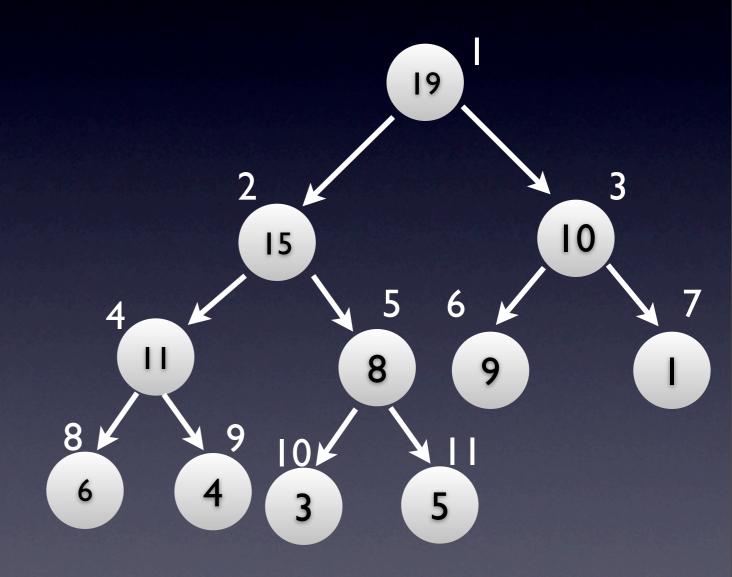
Update(node, new\_key)

- old\_key ← heap[node].key
- heap[node].key new\_key
- if new\_key < old\_key: sift(node)</p>
- else: percolate(node)

# Messing with Heaps II

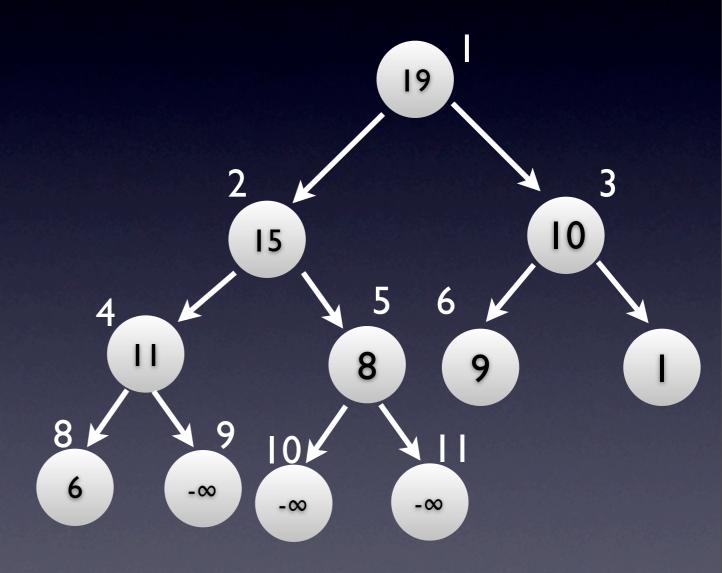
#### • Goal

- Want to shrink or grow the heap
- Growing:
  - inserting keys
- Shrinking:
  - deleting keys



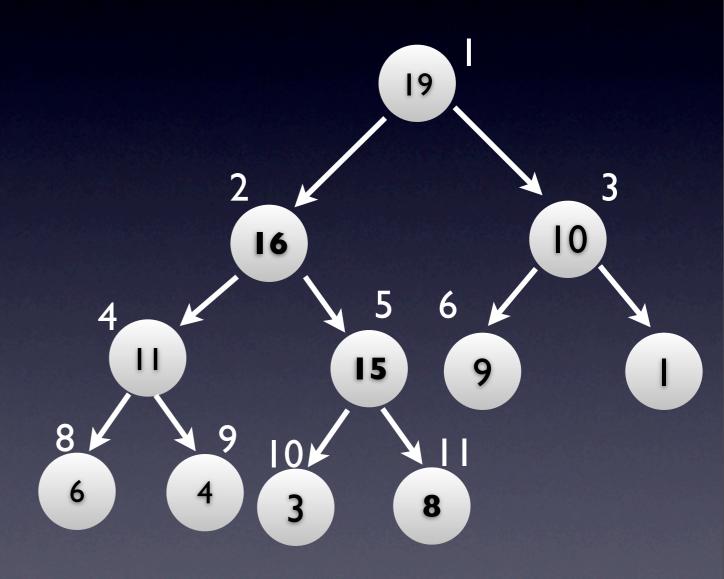
# Messing with Heaps II: One More Node

- Can always insert -∞ at the end of the heap
- Max-Heap will not be violated
  - Can only add to the end, otherwise we wouldn't get an (almost) complete binary tree



# Messing with Heaps II: One More Node

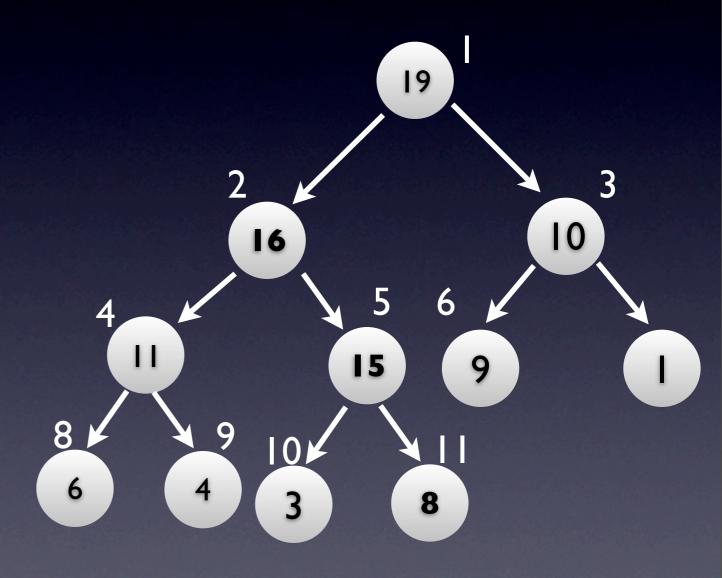
- Insert any key
  - insert -∞ at the end of the heap
  - change node's key to desired key
  - sift



# Messing with Heaps II: One More Node

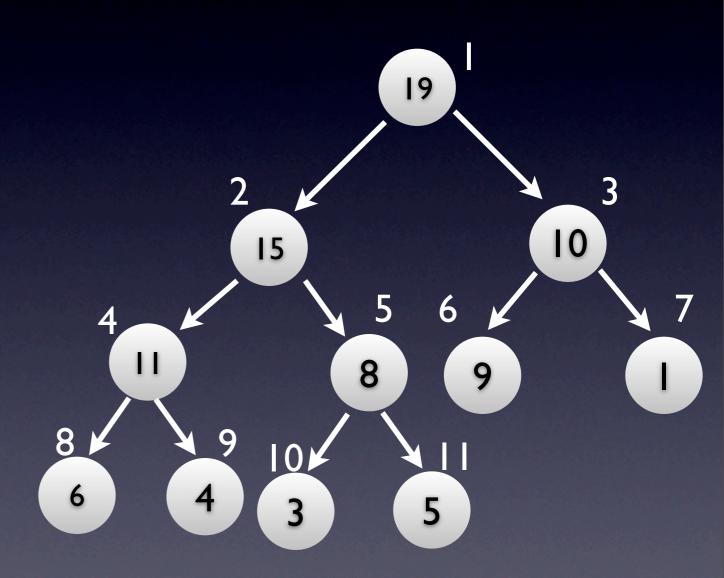
Insertion cost

- insert -∞ at the end of the heap - O(I)
- change node's key to new key - O(I)
- sift O(log(N))
- Total cost: O(log(N))



# Messing with Heaps II: One <del>More</del> Less Node

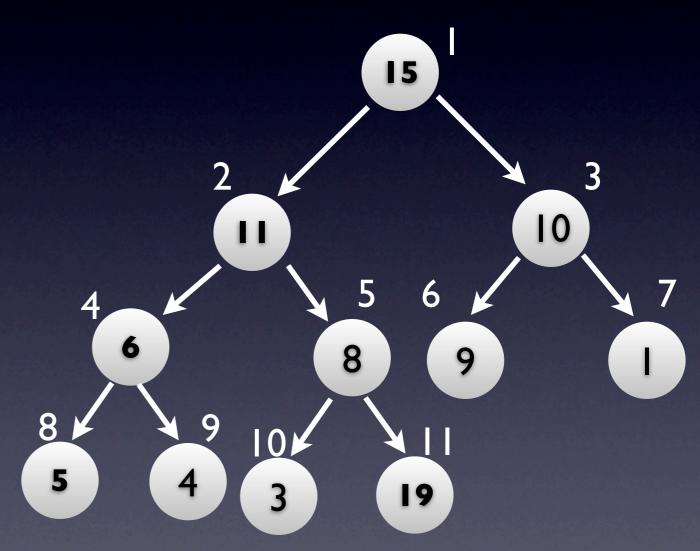
- Can always delete last node
- Max-Heap will not be violated
  - It must be the last node, otherwise the binary tree won't be (almost) complete



## Messing with Heaps II: One More Less Node

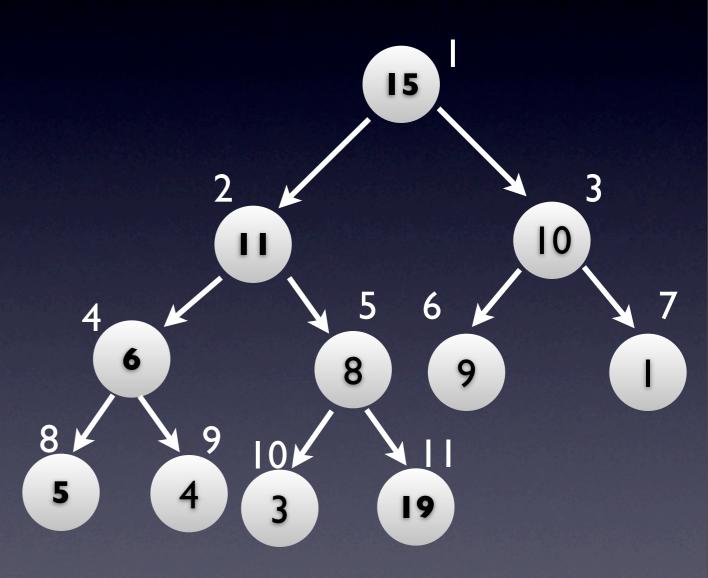


- Replace root key with last key
- Delete last node
- Percolate



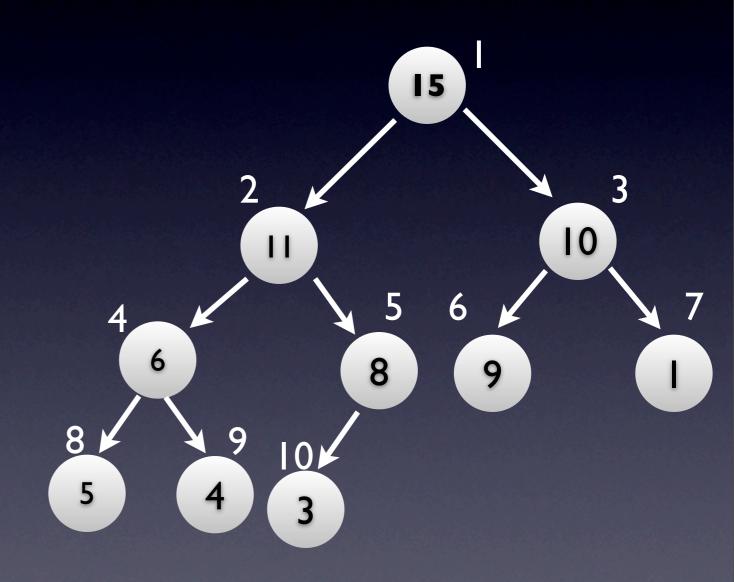
## Messing with Heaps II: One More Less Node

- Deleting root cost
  - Replace root key with last key - O(I)
  - Delete last O(I)
  - Percolate O(log(N))
- Total cost: O(log(N))



## Messing with Heaps II: One More Less Node

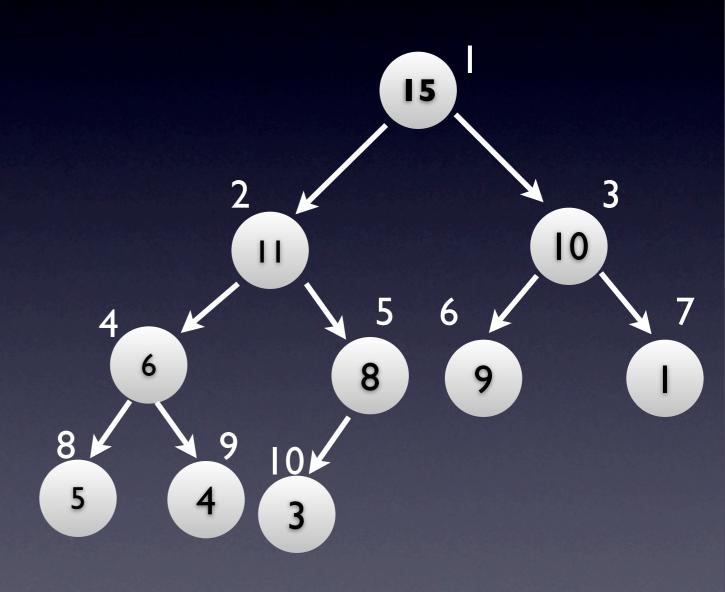
- Deleting any node
  - Change key to  $+\infty$
  - Sift
  - Delete root



# Messing with Heaps II: One <del>More</del> Less Node

- Deletion cost
  - Change key to +∞ O(1)
  - Sift O(log(N))
  - Remove root O(log(N))

Total cost: O(log(N))



# Heap-Sort: Everything Falls Into Place

- Start with empty heap
- Build the heap: insert a[0] ... a[N-1]
- Build the result: delete root until heap is empty, gets keys sorted in reverse order
- Use a to store both the array and the heap (explained in lecture)

# Heap-Sort: Slightly Faster

- Build the heap faster: Max-Heapify
  - Explained in lecture
  - O(N) instead of  $O(N \cdot \log(N))$
- Total time for Heap-Sort stays O(N·log(N)) because of N deletions
- Max-Heapify is very useful later

# Priority Queues

- Data Structure
  - **insert**(key) : adds to the queue
  - max() : returns the maximum key
  - **delete-max**() : deletes the max key
  - **delete**(key) : deletes the given key
    - optional (only needed in some apps)

# Priority Queues with Max-Heaps

- Doh? (assuming you paid attention so far)
- Costs (see above line for explanations)
  - insert: O(log(N))
  - max: O(I)
  - delete-max: O(log(N))
  - delete: O(log(N)) only if given the index of the node containing the key

#### Cool / Smart Problem

- Given an array **a** of numbers, extract the **k** largest numbers
- Want good running time for any **k**

# Cool / Smart Problem

#### • Small cases:

- k = 1: scan through the array, find N
- k small
  - try to scale the scan
  - getting to O(kN), not good

#### Cool / Smart Problem

- Solution: Heaps!
  - build heap with Max-Heapify
  - delete root k times
  - $O(k \cdot log(N))$
- Bonus Solution: Selection Trees (we'll come back to this if we have time)

Discussion: Priority Queue Algorithms

- BSTs
  - store keys in a BST
- Regular Arrays
  - store keys in an array
- Arrays of Buckets
  - a[k] stores a list of keys with value k