MIT OpenCourseWare
http://ocw.mit.edu

6.006 Introduction to Algorithms

Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Lecture 15: Shortest Paths I: Intro

Lecture Overview

- Homework Preview
- Weighted Graphs
- General Approach
- Negative Edges
- Optimal Substructure

Readings

CLRS, Sections 24 (Intro)

Motivation:

Shortest way to drive from A to B (Google maps "get directions")
Formulation: Problem on a weighted graph $G(V, E) \quad W: E \rightarrow \Re$
Two algorithms: Dijkstra $O(V \lg V+E)$ assumes non-negative edge weights Bellman Ford $O(V E)$ is a general algorithm

Problem Set 5 Preview:

- Use Dijkstra to find shortest path from CalTech to MIT
- See "CalTech Cannon Hack" photos (search web.mit.edu)
- See Google Maps from CalTech to MIT
- Model as a weighted graph $G(V, E), W: E \rightarrow \Re$
- $V=$ vertices (street intersections)
- $E=$ edges (street, roads); directed edges (one way roads)
$-W(U, V)=$ weight of edge from u to v (distance, toll)

$$
\begin{aligned}
& \text { path } p=<v_{0}, v_{1}, \ldots v_{k}> \\
& \quad\left(v_{i}, v_{i+1}\right) \epsilon E \text { for } 0 \leq i<k \\
& \quad w(p)=\sum_{i=0}^{k-1} w\left(v_{i}, v_{i+1}\right)
\end{aligned}
$$

Weighted Graphs:

Notation:

$v_{0} \xrightarrow{p} \quad v_{k}$ means p is a path from v_{0} to $v_{k} .\left(v_{0}\right)$ is a path from v_{0} to v_{0} of weight 0. Definition:
Shortest path weight from u to v as

$$
\delta(u, v)=\left\{\begin{array}{llll}
\min \left\{\begin{array}{llll}
w(p): & & p & \\
\infty & u & \longrightarrow & v
\end{array}\right\} & \begin{array}{l}
\text { if } \exists \text { any such path } \\
\\
\end{array} & & \text { otherwise } \quad(v \text { unreachable from } u)
\end{array}\right.
$$

Single Source Shortest Paths:

Given $G=(V, E), w$ and a source vertex S, find $\delta(S, V)$ [and the best path] from S to each $v \epsilon V$.

Data structures:

$$
\begin{aligned}
d[v] & =\text { value inside circle } \\
& =\left\{\begin{array}{cc}
0 & \text { if } v=s \\
\infty & \text { otherwise }
\end{array}\right\} \Longleftarrow \text { initially } \\
& =\delta(s, v) \Longleftarrow \text { at end } \\
d[v] & \geq \delta(s, v) \text { at all times }
\end{aligned}
$$

$d[v]$ decreases as we find better paths to v
$\Pi[v]=$ predecessor on best path to $v, \Pi[s]=$ NIL

Example:

Figure 1: Shortest Path Example: Bold edges give predecessor Π relationships

Negative-Weight Edges:

- Natural in some applications (e.g., logarithms used for weights)
- Some algorithms disallow negative weight edges (e.g., Dijkstra)
- If you have negative weight edges, you might also have negative weight cycles \Longrightarrow may make certain shortest paths undefined!

Example:

See Figure 2

$$
B \rightarrow D \rightarrow C \rightarrow B \text { (origin) has weight }-6+2+3=-1<0 \text { ! }
$$

Shortest path $S \longrightarrow C$ (or B, D, E) is undefined. Can go around $B \rightarrow D \rightarrow C$ as many times as you like
Shortest path $S \longrightarrow A$ is defined and has weight 2

Figure 2: Negative-weight Edges

If negative weight edges are present, s.p. algorithm should find negative weight cycles (e.g., Bellman Ford)

General structure of S.P. Algorithms (no negative cycles)

$$
\begin{array}{ll}
\text { Initialize: } & \text { for } v \in V: \begin{array}{cc}
d[v] & \leftarrow \\
\Pi[v] & \leftarrow \\
\text { Main: } & \\
& d[S] \leftarrow 0 \\
\text { repeat }
\end{array} \\
\text { NIL }
\end{array}
$$

Complexity:

Termination? (needs to be shown even without negative cycles)
Could be exponential time with poor choice of edges.

Figure 3: Running Generic Algorithm

Optimal Substructure:

Theorem: Subpaths of shortest paths are shortest paths
Let $p=<v_{0}, v_{1}, \ldots v_{k}>$ be a shortest path
Let $p_{i j}=<v_{i}, v_{i+1}, \ldots v_{j}>\quad 0 \leq i \leq j \leq k$
Then $p_{i j}$ is a shortest path.

Proof:

Figure 4: Optimal Substructure Theorem
If $p_{i j}^{\prime}$ is shorter than $p_{i j}$, cut out $p_{i j}$ and replace with $p_{i j}^{\prime}$; result is shorter than p . Contradiction.

Triangle Inequality:

Theorem: For all $u, v, x \in X$, we have

$$
\delta(u, v) \leq \delta(u, x)+\delta(x, v)
$$

Proof:

Figure 5: Triangle inequality

